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Substantiating freedom from parasitic infection
by combining transmission model predictions
with disease surveys
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Stopping interventions is a critical decision for parasite elimination programmes. Quantifying

the probability that elimination has occurred due to interventions can be facilitated by

combining infection status information from parasitological surveys with extinction thresh-

olds predicted by parasite transmission models. Here we demonstrate how the integrated use

of these two pieces of information derived from infection monitoring data can be used to

develop an analytic framework for guiding the making of defensible decisions to stop inter-

ventions. We present a computational tool to perform these probability calculations and

demonstrate its practical utility for supporting intervention cessation decisions by applying

the framework to infection data from programmes aiming to eliminate onchocerciasis and

lymphatic filariasis in Uganda and Nigeria, respectively. We highlight a possible method for

validating the results in the field, and discuss further refinements and extensions required to

deploy this predictive tool for guiding decision making by programme managers.
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A key development in human health over the past decade
has been the initiation and implementation of several
large-scale disease-specific global health initiatives aiming

to achieve the regional or global elimination or eradication of
a range of debilitating infectious diseases, including polio,
malaria, tuberculosis, and the many parasitic diseases that toge-
ther constitute the so-called “Neglected Tropical Diseases
(NTDs)”1–4. These programmes have led to remarkable reduc-
tions in the global burdens of these diseases to low or moderately
low levels in the tropics and subtropics, but achieving regional or
national disease elimination has proved to be far more challen-
ging with increasing appreciation that meeting this exacting goal
would require the application of intensified interventions over
large areas and over extended periods of time5. For such pro-
grammes, a major managerial question is deciding when the
disease has been eliminated over a spatial domain of interest so
that control activities can be stopped. This clearly presents a
critical decision point in the management of these programmes,
as stopping interventions too soon would lead to the inevitable re-
emergence of transmission and reversal of the health gains
achieved6,7, whereas stopping too late would lead to continuing
with interventions and monitoring for many more years than
necessary.

There are two major problems with developing analytical fra-
meworks for assisting with declaring that a population (whether a
village, district, province, or the whole country) is free from a
disease. First, as assessments of disease status are normally made
by testing samples from a population, the detection of infected
hosts is dependent on the characteristics of disease surveys,
including the representativeness and size of samples used in
surveys, as well as the diagnostic performance (sensitivity and
specificity) of the tests used to classify infection status8. As very
few diagnostic tests are perfect, their use in disease surveys means
that it is often possible to obtain some positive test results even if
there is no disease present because of the test producing false
positives, whereas if the disease is present it is also possible to get
false-negative test results and thus miss diseased individuals.
These issues mean that it is impossible to prove that a population
is free from disease in an area even with large sample sizes, as
there is always the chance that an infected individual may have
been missed or that the test result is wrong8,9. However, although
it can never be proved entirely that a population is free from a
disease, if enough individuals are surveyed over an area and the
performance of the diagnostic test used is taken into account,
then it is possible to show how unlikely it is that a population has
continuing infection or disease8–12.

The second problem relates to defining the threshold pre-
valence of disease that denotes whether transmission is ongoing
or has been interrupted in a population13–17. This threshold
represents the maximum acceptable disease prevalence or the
design prevalence that the survey can be expected to reliably
identify given its sampling and design characteristics (see Meth-
ods)8,18. There are two issues connected with setting this level of
acceptable infection. First, its specification is important mainly
because calculations of the probability of having achieved disease
freedom based on a survey are founded on the (hypothetical) null
hypothesis that infection is present at the specified design pre-
valence in the population19. Given this, the design prevalence is
essentially an abstract statement of the level of infection expected
to be present in nature, the reliable measurement of which is used
to assess whether transmission is ongoing in a setting. Second,
assigning a value to this prevalence implies that if infection is
found to be present in a population but below the specified
positive design prevalence, then we assume that parasite trans-
mission has been interrupted. This means that its level should

essentially be set based on knowledge of parasite extinction
dynamics, particularly with regard to the values of the infection
breakpoint thresholds that govern parasite transmission occur-
rence or absence in a population6,15–17,20. Arbitrarily set design
prevalences, as traditionally used in the case of livestock disease
management or indeed used by the World Health Organization
(WHO) for various NTDs (e.g., the 1% microfilariae (Mf)
prevalence target for determining lymphatic filariasis (LF)
or onchocerciasis elimination21,22), will be insufficient in this
regard, as such levels may not mean parasite transmission has
been interrupted or that there is a high likelihood of attaining
zero prevalence once crossed6. In other words, assessing
freedom from infection requires setting design prevalences that
signify the eventual attainment of zero prevalence, i.e., not
just low but sustained prevalence. It is noteworthy, in passing,
that as a departure from previous freedom from disease
calculations8,18,19,23, the existence of these positive infection
breakpoint thresholds implies that parasite freedom calculations
can be practically performed even before negative surveillance
reports are obtained.

A key difficulty, however, is arriving at the value of this
threshold prevalence; recent work in modelling vector-borne
macroparasitic transmission dynamics has shown that these
breakpoint prevalences are highly dynamical and will invariably
vary from site to site depending on local transmission
conditions6,24–27. This result indicates that tools based on struc-
tured infection surveys to make claims of parasitic infection
freedom must crucially integrate knowledge regarding the
population ecology of breakpoints in different localities together
with survey metrics (sample size, diagnostic test performance)
to support substantiations of infection elimination in host
populations.

In this study, we present and demonstrate a new quantitative
approach that facilitates the coupling of surveillance data from
surveys designed to monitor or track the impact of interventions
on infection trends in communities with parasite transmission
model (PTM)-based estimates of infection breakpoint values for
predicting the probability of achieving infection freedom in a
setting. The approach is founded on the principles underlying the
use of structured surveys to demonstrate the achievement of
freedom from disease or infection in treated populations, and the
use of data-driven parasite transmission modelling as a tool for
predicting the infection breakpoint prevalences that will need to
be used along with infection surveys for quantifying the like-
lihood or probability of meeting the goal of parasite transmission
interruption. We present the construction of a novel integrated
parasite freedom from infection (PFFI) tool to facilitate this
coupling of two predictive tools, viz. data-driven PTMs and
survey-based proof-of-freedom methods, for enabling the making
of these calculations. We illustrate the utility of this modelling
approach to support declarations of parasitic infection freedom
by applying the tool to actual surveillance data from the current
programmes to eliminate onchocerciasis and LF in Uganda and
Nigeria, respectively. In particular, we show how the method can
be applied to quantify infection freedom and validate its suc-
cessful attainment based on data from active ongoing longitudinal
surveys tracking changes in infection prevalence in sentinel sites.
The importance of the integrated PFFI methodology for sup-
porting sample size calculations will also be noted in this exercise.
We end by discussing the critical need for evaluating such fra-
meworks and present a means to do so via the use of sequential
vector sampling methodologies. We also describe how our fra-
mework may be extended further to estimate cumulative evidence
of freedom from serial data and to facilitate the making of area-
wide PFFI estimations.
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Results
Model fits and breakpoints. Figure 1 provides an illustration of
the ability of our data-driven modelling approach to both identify
best-fitting onchocerciasis and LF models for describing observed
disease-specific Mf prevalence data in different community set-
tings, and to facilitate the estimation of the corresponding Mf
transmission thresholds for use as design prevalences (see
Methods). Results are shown for two of the onchocerciasis and
one of the LF study sites in the figure, with the full set of model
fits and the applicable 95% Mf elimination probability thresholds
(EPTs)—the Mf prevalence values, which when crossed below
would signify a 95% probability that transmission interruption is
likely to occur6,25—in all the other study sites given in Supple-
mentary Fig. 1 and Supplementary Fig. 2. As described in detail in
Singh and Michael6, and Michael and Singh25, these EPTs were
derived using an inverse empirical cumulative density function
(ECDF) approach and are calculated at either the annual biting
rate (ABR) or the threshold biting rate (TBR), depending on
whether a particular location has implemented vector control
measures in addition to mass drug administration (MDA).
Empirical evidence for the existence of these model-derived
thresholds, including validation that crossing below such
thresholds would lead to non-detectable filarial transmission, is
detailed in Reimer et al.28 and indicate that the breakpoints
predicted in this study are not merely theoretical outputs arising

from analyses of our data-fitted models but are very likely to
reflect actually occurring natural phenomena in the field.

The numerical values of the Mf 95% EPTs for each of the
onchocerciasis and LF study sites are further listed in Tables 1, 2
respectively. It is noteworthy that for the onchocerciasis sites,
these breakpoint estimates were derived via analyses of the
onchocerciasis models that were found to best fit the joint
baseline Mf prevalence and ABR data measured directly in each
site. Mf breakpoint values are shown at the TBRs for Mt. Elgon
villages and at the prevailing ABR intensity for all sites belonging
to the Madi Mid North focus in Uganda. As pointed out by Singh
and Michael6, Mf breakpoints at TBR are applicable when vector
control is added to MDA and so constitute the relevant target
breakpoints in the case of Mt. Elgon, whereas in the case of
MDA-only interventions as carried out in the Madi Mid North
focus, the corresponding breakpoints of interest are those that are
applicable at the prevailing and undisturbed ABR rates. In the
case of some of the LF study sites, however, the site-specific
breakpoint values were estimated by carrying out analyses based
on age-prevalence and ABR values hindcasted to pre-control
baseline states using the models that best fitted the available post-
intervention prevalence data in each site26. This was done to
account for the fact, first, that although all the LF sites received
MDA with Ivermectin and Albendazole starting from 2000 and
the first Mf survey was done just before this intervention29,
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Fig. 1 Model fits and estimated transmission breakpoints. The model fits (grey curves) to baseline microfilariae prevalence from two onchocerciasis
endemic sites, a Buriri, Uganda and b Masaloa, Uganda, and one LF endemic site c Gbuwhen, Nigeria, are shown. For Buriri and Masaloa, age-stratified Mf
prevalence patterns (shown in the figure as red squares for estimated plateau-type patterns with error bars representing the 95% binomial confidence
intervals) used for fitting were constructed according to the reported community-level Mf prevalence (Tables 1, 2). For Gbuwhen, the model was fit to post-
intervention data (shown in the inset plot as red squares with error bars representing the 95% binomial confidence intervals) and the baseline curves were
hindcasted. The distribution of the model-calculated Mf breakpoints (centre) and the corresponding inverse ECDFs (right) are shown for sites a–c. The
vertical dashed lines in the inverse ECDF plots denote the Mf breakpoint values corresponding to the 95% elimination probability thresholds applicable in
each village
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several of these sites had also previously received annual MDA
with Ivermectin only under the Nigerian Onchocerciasis
programme from the year 1993 (Table 2). Second, information
on individual baseline Mf prevalence or ABR values before the
onchocerciasis intervention were missing for these sites. The
actual values of Mf breakpoints displayed in Tables 1, 2
corroborate our previous modelling findings6,24,25 regarding
filarial breakpoints, viz. they will invariably: (1) vary significantly
between endemic communities, (2) be higher at TBR, and (3)
demonstrably be much lower than the WHO suggested threshold
of 1% Mf prevalence for use as intervention targets for either
infection. The results also suggest the added intriguing possibility
that these Mf thresholds applicable to LF could also be
significantly lower (at least by onefold) than those that may
apply in communities for onchocerciasis (Tables 1, 2).

Applying the PFFI tool. Tables 3, 4 presents the results of
applying the PFFI tool (Fig. 2) to the longitudinal Mf pre-
valence data as reported in both the onchocerciasis and LF
sites investigated in this study (Tables 1, 2). The results given in
Table 3 for the onchocerciasis dataset indicate that in the case
of the Mt. Elgon sites, except for the village of Buriri in 2011,
all villages were found to have very low probabilities for
accepting the null hypothesis, indicating a corresponding high
probability that each population is free from infection at con-
fidence levels generally above 95%. A noteworthy feature of
the results, however, was that high confidences of having
achieved infection freedom (> 95% confidence) were already
apparent by 2005 in each of the Mt. Elgon sites (Table 3), and
that, in general, the confidence of having achieved infection
freedom improved further by 2011, as would be expected given
that interventions continued in these sites after parasite elim-
ination thresholds were first crossed in 2005. This result also
suggests that since the decision to stop interventions in Mt. Elgon

was made only in 2011 based on the criteria noted above, a
further 5 years of unnecessary interventions may have been
implemented in these sites. In the case of the Madi Mid North
focus, however, the results indicate that except for Palaure
Pacunaci village, none of the other villages may be deemed to
have eliminated the infection (Table 3). Although this conclusion
appears to support the decision taken by the Uganda Oncho-
cerciasis Elimination Programme to continue MDA in this focus,
our analysis indicates that the results reported in Table 3 for these
villages could be a direct outcome of the inadequate sample sizes
used for measuring infection prevalences in the respective
populations (Table 1).

The results from the corresponding PFFI analysis for the
Nigerian LF sites are shown in Table 4. As in the case for the
onchocerciasis sites, these results also indicate that if sufficient
sample sizes were used for assessing infection levels (Table 2),
freedom from infection could have been declared in the present
LF sites and interventions stopped much earlier than was done in
practice.

Impact of sample sizes and diagnostic test characteristics. The
impact of sample sizes for calculating confidences of having
achieved infection freedom is highlighted by the results shown in
Table 5 for the inconclusive onchocerciasis sites investigated in
this study. The results show that if sample sizes were increased
from the original numbers while maintaining the actual Mf
prevalences measured and the design prevalences estimated in
each of these sites, the increased sample sizes would have enabled
the rejection of the null hypothesis and therefore support the
conclusion that each of these populations was free of infection as
early as the year 2004 in the case of Madulu and Masaloa villages
in the Madi Mid North focus, and by year 2011 in the case of
Buriri village in Mt. Elgon (Table 5). This finding indicates the
importance of deriving and using adequate sample sizes when

Table 1 Onchocerciasis survey data for Ugandan villages and model-predicted Mf prevalence thresholds at village-specific ABR
and TBR

Focus (transmission
status)

Village Year Total
population

Sampled No.
positive

Mf prevalence
(%)

Mf breakpoint (design prevalence)

95% EP
threshold at ABR

95% EP
threshold at TBR

Mt. Elgon
(interrupted)

Bubungi 1994a 601 – – 75 – 0.47
2005 442 156 3 1.92
2011 528 107 0 0

Bunabutiti 1994a 1098 – – 53.8 – 0.36
2005 177 110 0 0
2011 650 123 1 0.81

Bunambatsu 1994a 969 – – 58.8 – 0.42
2005 1127 124 2 1.61
2011 951 133 1 0.75

Buriri 1994a 350 – – 61.3 – 0.68
2005 426 137 1 0.73
2011 544 63 1 1.59

Madi Mid North
(ongoing)

Andra 1993a 510 – – 70 0.15 –
2004 698 101 7 6.9

Madulu 1993a 1620 – – 72 0.15 –
2004 812 99 3 3
2011 1182 106 2 1.9

Masaloa 1993a 1122 76 0.11 –
2004 1109 129 5 3.9

Palaure
Pacunaci

1993a 214 – – 100 0.03 –
2004 430 88 12 13.6

In Mt. Elgon, Simulium neavei is the vector species responsible for transmission67, whereas Simulium damnosum is responsible in Madi Mid North68
aPre-intervention survey
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Table 2 LF survey data for Nigerian villages and corresponding model-predicted Mf prevalence thresholds at ABR

Nigerian
state

Village Year Total populationa No. sampled No. positive Mf prevalence
(%)

Mf breakpoint (design prevalence,
95% EP threshold at ABR)

Nasarwa Gbuwhenb 2001 1503 508 19 3.7 0.014
2004 446 8 1.8
2005 286 1 0.3
2006 183 1 0.5
2007 196 0 0.0
2008 127 0 0.0
2009 175 0 0.0

Maigangab 2001 431 486c 23 4.7 0.012
2005 169 5 3.0
2006 126 7 5.6
2007 158 1 0.6
2008 109 2 1.8
2009 152 1 0.7

Plateau Dokan Tofa 2002d 2677 419 21 5.0 0.016
2007 151 2 1.3
2008 158 0 0.0
2009 223 1 0.4

Gwamlar 2002d 6052 494 33 6.7 0.017
2006 240 29 12.1
2007 128 2 1.6
2008 100 5 5.0
2009 143 7 4.9

Lankanb 2001 2119 274 9 3.3 0.012
2004 365 27 7.4
2005 243 11 4.5
2006 81 2 2.5
2007 117 2 1.7
2008 173 7 4.0
2009 201 0 0.0

Piapung 2002d 2068 403 40 9.9 0.016
2007 187 18 9.6
2009 291 6 2.1

Serib 2003 1207 527 56 10.6 0.012
2005 321 5 1.6
2006 157 2 1.3
2007 133 1 0.8
2008 110 3 2.7
2009 258 0 0.0

aTotal population estimate calculated by dividing the 2009 eligible population given in Richards et al.30 by the fraction of the population eligible for treatment. We assume the eligible population is equal
to the population of age greater than 5 years, which was calculated to be 0.8125 in Nigeria
bDenotes a village where no pre-intervention data were available so baseline conditions were hindcasted by fitting the model to post-intervention survey data
cAs the sample size was greater than the estimated population size, the entire population was considered to have been sampled
dPre-intervention survey
Although both Culex and Anopheles mosquitoes are present in this region, Anopheles is the primary vector responsible for transmission30

Table 3 Results from the onchocerciasis PFFI analyses

Focus (transmission
status)

Village Year Probability of null
hypothesis, P0

Probability of alternative
hypothesis, Pa

Confidence
of freedom

Classificationa

Mt. Elgon (interrupted) Bubungi 2005 0.021 0.986 0.979 Y
2011 0.002 1.000 0.998 Y

Bunabutiti 2005 0.001 1.000 0.999 Y
2011 0.008 0.998 0.992 Y

Bunambatsu 2005 0.033 0.987 0.967 Y
2011 0.005 0.999 0.995 Y

Buriri 2005 0.003 0.999 0.997 Y
2011 0.120 0.961 – Insufficient evidence

Madi Mid North
(ongoing)

Andra 2004 0.807 0.241 – Insufficient evidence
Madulu 2004 0.157 0.878 – Insufficient evidence

2011 0.048 0.971 0.952 Y
Masaloa 2004 0.310 0.778 – Insufficient evidence
Palaure Pacunaci 2004 0.999 0.001 0.001 N

aN not free from infection,Y free from infection
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performing parasite infection freedom assessments, because
inadequate sample sizes would indicate ongoing transmission, as
was deemed for Madi Mid North, when in reality a high prob-
ability may have been reached indicating that transmission has
ceased.

An important caveat to note is that these results are highly
sensitive to the specificity of the diagnostic tests used. If the
specificity of a test tends to 1 then the power of declaring a
population infection-free will decline dramatically for a given
sample size (Fig. 3), essentially because of significant reductions
in the observation of false-positive diagnostic test results. Only by
increasing sample sizes at high test specificities for a given
combination of test sensitivity and design prevalence values will
high survey confidences (e,g., > 95%) be achieved for declaring
infection freedom in such a case (Fig. 3). This result underscores
the paramount importance of using appropriate test performance
values and sample size calculations when carrying out PFFI
predictions. Note, because there is a lack of clear consensus on the
sensitivity and specificity of the diagnostic tools used in these
surveys (thick blood smear for LF and skin snip microscopy for
onchocerciasis)30–36, we used a neutral set of test performance
values for both these Mf detection tests, viz. Se= 0.95 and Sp=
0.95, in the PFFI calculations described here. This means that the
results in Tables 3, 4 need to be seen as indicative rather than
definitive at this stage, although, as we show in Supplementary
Table 1 (and corroborating the results depicted in Fig. 3),

lowering Se to 0.85 while keeping Sp at 0.95 will make essentially
no difference to the present results.

Discussion
This work shows that demonstrating freedom from parasitic
infection due to applications of community-wide interventions in
a population essentially requires calculating the probability that a
particular surveillance plan will reliably detect a transmission
interrupting threshold in that population. In particular, we have
shown that when parasite breakpoint values are used as design
prevalences and a surveillance system finds infection below these
prevalences at an acceptably high level of confidence (e.g., 95%),
then we can be sufficiently confident that transmission inter-
ruption has occurred. This incorporation of positive-valued
breakpoint prevalence values in the freedom calculations by the
present predictive framework sets it apart from the traditional
application of the freedom from disease approach, in which
design prevalences are arbitrarily set and negative surveillance
data are used to carry out infection freedom calculations (see a
recent review of these approaches by Stresman et al.37). Although
many questions still remain to be resolved in the actual appli-
cation of these methods to human diseases (see below and ref. 37),
the work presented here, together with results from an analysis
carried out by Dukpa et al.38 with respect to validating the
reported status of a district in Bhutan being free from foot-and-

Table 4 Results from the LF PFFI analyses

Nigerian state Village Year Probability of null
hypothesis, P0

Probability of alternative
hypothesis, Pa

Confidence of
freedom

Classificationa

Nasarwa Gbuwhen 2001 0.100 0.925 – Insufficient evidence
2004 0.000 1.000 1.000 Y
2005 0.000 1.000 1.000 Y
2006 0.001 1.000 0.999 Y
2007 0.000 1.000 1.000 Y
2008 0.001 1.000 0.999 Y
2009 0.000 1.000 1.000 Y

Maiganga 2001 0.429 0.579 – Insufficient evidence
2005 0.120 0.928 – Insufficient evidence
2006 0.666 0.443 – Insufficient evidence
2007 0.002 1.000 0.998 Y
2008 0.072 0.975 – Insufficient evidence
2009 0.003 1.000 0.997 Y

Plateau Dokan Tofa 2007 0.017 0.996 0.983 Y
2008 0.000 1.000 1.000 Y
2009 0.000 1.000 1.000 Y

Gwamlar 2006 1.000 0.000 0.000 N
2007 0.042 0.989 0.958 Y
2008 0.613 0.564 – Insufficient evidence
2009 0.573 0.577 – Insufficient evidence

Lankan 2001 0.112 0.933 – Insufficient evidence
2004 0.981 0.029 0.019 N
2005 0.429 0.674 – Insufficient evidence
2006 0.218 0.917 – Insufficient evidence
2007 0.062 0.982 – Insufficient evidence
2008 0.352 0.766 – Insufficient evidence
2009 0.000 1.000 1.000 Y

Piapung 2007 0.997 0.006 0.003 N
2009 0.008 0.997 0.992 Y

Seri 2003 1.000 0.000 0.000 N
2005 0.001 1.000 0.999 Y
2006 0.012 0.997 0.988 Y
2007 0.008 0.999 0.992 Y
2008 0.185 0.917 – Insufficient evidence
2009 0.000 1.000 1.000 Y

aN not free from infection, Y free from infection
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mouth disease, point to the potential power of applying these
non-zero prevalence thresholds for guiding the making of
defensible evidence-based intervention stopping decisions in
disease control programmes.

The PFFI approach developed and used in this study also
differs conceptually and methodologically from existing WHO
infection freedom assessment frameworks. First, it explicitly
addresses the problem related to the use of arbitrarily defined
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biting rate, and the baseline mf survey results (data from 6). The map of site-specific transmission thresholds highlights the spatial heterogeneity of
breakpoints used here for defining the design prevalence in the PFFI calculations (data from 69,70)

Table 5 Required sample sizes and corresponding PFFI classifications

Focus
(transmission
status)

Site Year Survey
sample
size

Required
sample size

Probability of null
hypothesis, P0

Probability of
alternative hypothesis,
Pa

Confidence
of freedom

Classificationa

Mt. Elgon (status:
interrupted)

Buriri 2011 63 93 0.031 0.992 0.969 Y

Madi Mid North
(status: ongoing)

Andra 2004 101 401 0.961 0.049 0.039 N
Madulu 2004 99 359 0.044 0.972 0.956 Y
Masaloa 2004 129 889 0.048 0.959 0.952 Y

aN not free from infection, Y free from infection
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infection thresholds for assessing the achievement of parasite
transmission interruption by existing methods21,39–41. We have
shown using modelling studies, how, in this regard, if arbitrarily
set infection thresholds are used as elimination targets for a
disease, such as LF, then if the actual breakpoint thresholds are
not crossed, such an approach will invariably result in a high
likelihood that resurgence of infection will occur6. Empirical
results have begun to support these theoretical findings; for
example, a recently reported community trial of MDA versus
combined MDA and vector control interventions against LF in
India has provided the first field evidence for this potential for
resurgence of infection if MDA is stopped before these natural
breakpoints are crossed7. A similar explanation may also underlie
the findings from a recently concluded post-intervention assess-
ment carried out across Sri Lanka, which showed the persistence
of LF transmission in many communities that had both under-
gone MDA interventions and met the standard WHO LF end-
point criteria40. These results reinforce a key conclusion from
both our original modelling and present works, viz. if reliable
declarations of transmission interruption are to be made in
parasite elimination programmes, there is a vital need to apply
ecologically sound breakpoint values rather than use untested,
arbitrarily defined target thresholds for making such decisions6,25.

Second, current WHO disease freedom assessment tools are
largely developed and applied with little consideration paid to the
impacts that sample sizes and diagnostic tool statistics can have in
the evaluation of infection endpoints in a population21,39–41. Our

analysis has highlighted the vital role that the performance of
diagnostic tools can play not only for reliably clarifying infection
levels that can be expected to occur in a population, but also for
calculating the sample sizes required for carrying out dependable
freedom from infection assessments. This is a well-established
consequence of using structured surveys for detecting
infection8,9,11,18,19,23,42–44, and yet these features have curiously
been little used in current WHO-led transmission interruption
assessment survey designs21,41. This lacuna also includes the
current incomplete information on the sensitivity and specificity
of the various diagnostic tools used or proposed for measuring
filarial infections45. These deficiencies mean that confidence in
any predictions that parasite transmission interruption has
occurred made by such frameworks is unlikely to be high. This
supports the overriding need for not only resolving these infec-
tion measurement issues but also for evaluating the use of new
predictive frameworks, such as the present PFFI tool, which can
facilitate more informed decision-making via combining the
effects of parasite extinction dynamics with diagnostic tool sta-
tistics effectively.

The application of our approach to programmatic disease-
surveillance data tracking changes in human infection pre-
valences resulting from interventions against the two diseases
investigated in this study (viz. onchocerciasis in Uganda and LF
in Nigeria) has provided a first demonstration of how a model-
based surveillance tool may be used to reliably establish as well as
validate any reported infection-free status of a community. The
results have highlighted two major benefits in this regard. First, if
positive, albeit low-valued, infection breakpoints occur for a
parasitic system, then they show that it is not necessary to wait
until zero infection levels are reached before infection freedom
evaluations can be attempted. This is a departure from previous
applications of the disease freedom algorithms for making such
assessments in the livestock and pest management settings8,9,23,
where zero infection sequence data are often used in making such
calculations. The second benefit relates to its use for validating
reported infection-free status based on the use of previously set or
existing endpoint criteria. The chief result here pertains to our
analysis of the data from the Mt. Elgon sites (Table 3), which
show that primarily due to the infection threshold levels that
apply to a setting, and the sample sizes and diagnostic tools used
to measure infection levels, declarations of attainment of parasite
elimination may well be supported significantly earlier than was
actually done in a setting based on declines in infection pre-
valence alone. In addition, our analysis of sample sizes on the
expected outcomes from the inconclusive sites observed in both
the Madi Mid North focus and in Mt. Elgon (Table 5) point to the
possibility that infection freedom may have been attained even in
these sites if deficiencies in sample sizes used for carrying out the
transmission interruption assessments were addressed adequately.
These are clearly findings with major implications for the efficient
design and surveillance of parasite elimination programmes.
Getting such decisions right is also of major economic value as
timely stoppings of control will lead to cost savings not only in
terms of reducing unnecessary prolonging of interventions in any
given area, but also via facilitating the re-allocation of resources
from areas in which transmission is evaluated to be reliably
interrupted to areas where the infection is shown to be potentially
still present. Indeed, a coordinated assessment framework that
combines the outcomes of data-driven parasite endpoint model-
ling and survey-based proof-of-freedom metrics may offer a tool
for identifying the optimal stopping threshold in a setting by
considering the uncertainty in infection freedom predictions,
stakeholder preferences, and the potential monetary costs asso-
ciated with surveillance and re-application of control if parasite
freedom is wrongly declared46.
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Fig. 3 Power of a survey to declare infection freedom in a population. The
solid lines depict the change in the power of an infection freedom survey (in
the form of confidence for declaring freedom) as the specificity of the
diagnostic test used increases to 0.99 for three fixed sensitivity values (Se
= 0.8, 0.875, and 0.95) and fixed survey sample sizes. The results show
the dramatic decline in the power of a survey to declare infection freedom
as diagnostic test specificity increases from 0.95 towards perfect
specificity, whereas increases in sensitivity for a given specificity value has
only a slight effect. The dotted line shows that the power of the survey can
be maintained even at high specificities by changing the sample size. As
test specificity increases (for a given sensitivity), confidence of a survey to
declare infection freedom can only be maintained at high levels (> 95%) by
increasing sample sizes significantly. In the present example, which is
based on the 2011 survey results from Bunabutiti (Table 1), the required
sample sizes to maintain this high confidence for declaring freedom from
onchocerciasis (dotted line) work out to be 123 at Sp= 0.96 to as high as
650 at Sp= 0.99
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The present data analysis has also allowed appraisal of the next
stage of critical work that must be resolved if the developed tool is
to be deployed effectively in the field. First, with respect to our
PFFI tool, we indicate that a major need is to validate whether
estimating high infection freedom probabilities using human
infection surveillance data and model-estimated design pre-
valences do indeed signify that parasite transmission has
been broken in a site (e.g., > 95% confidence of freedom level
(Tables 3, 4)). We have previously shown from analyses carried
out in Papua New Guinea that one sensitive test to validate
predictions of transmission interruption based on human infec-
tion thresholds is to assess whether crossing below these
thresholds will lead to the absence of infection in vector popu-
lations28. However, one difficulty with assessing the crossing of
the corresponding very low larval infection breakpoint prevalence
values6,47 or zero infection in vector populations is the require-
ment of significantly large sample sizes to carry out this exer-
cise48–50. We suggest that the application of the sequential
sampling approach for classifying whether an observed arthropod
infection incidence is significantly below or above a critical
intensity or threshold, however, may show particular promise for
effectively resolving this practical problem in the field49–52. In
sequential sampling, sampling efforts are carried out in sequence
until a predefined critical threshold of pests or infected vector
numbers, p, are either reached (so triggering implementation of
control) or is detected to be below p (so enabling stopping of
control). Figure 4 illustrates this method for a scenario for which
the infective L3 larval threshold prevalence in a setting is 0.005%.
The graph to the right of the panel indicates that to detect this
threshold an average sample of at least approximately 350 mos-
quitoes would be needed. It is noteworthy that the equivalent
sample size using the fixed n sampling approach (for the binomial
distribution) for the same purpose would require up to 1200
mosquitoes per sampling bout50,53. The figure on the left shows
that if 400 mosquitoes were sampled, say, but one infected

mosquito was found in a first bout, sampling should be con-
tinued, i.e., another bout of sampling should be conducted.
However, suppose that in the second bout, zero infected mos-
quitoes are found, then the cumulative number of infected
mosquitoes would still remain at 1. Now, reading along the y
(cumulative positive cases) and x axes (observe that the cumu-
lative sample size along the x axis is now 800) of the graph, we
can use the stop lines (the lower of which represents the 0.005%
threshold and the upper a 0.01% threshold49,54 to determine at
95% confidence if the cumulative number of infected mosquitoes
from a sequence of two bouts lies below the lower stop line or not.
If it lies below the stop line, then sampling can cease and one can
confidently predict (here at the 95% confidence level) that
transmission has been broken (in the sense that infection in the
sample of 800 mosquitoes from consecutive sampling is below
the L3 prevalence threshold of 0.005%). These results show that
coupling a sequential vector sampling framework to PFFI
assessments based on human infection data in a setting could
allow validation of the PFFI predictions of transmission inter-
ruption in a given site, including determining whether once
infection thresholds are crossed, parasitic infection will decline to
zero. Such an analysis will also permit evaluations of which
indicator of infection might be most sensitive for supporting
estimations of infection freedom. Empirical studies are now
required for conducting these studies especially given that we are
rapidly nearing the 2020 deadline set by the WHO 2012 Roadmap
on NTDs for achieving the global elimination of these diseases55.

A second future need is the extension of our method to account
for serial surveillance data in order to develop plans for assessing
cumulative evidence for infection freedom. Currently, we have
considered each data point to be temporally independent, a
simplification which is clearly less than optimal when dealing
with the analysis of longitudinal surveillance data. Such plans
must also consider the fact that populations are not closed and
the effect that importation of infection will have on freedom
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Fig. 4 Sequential entomological sampling for classification. a Stop lines corresponding to a Wald’s sequence probability ratio test (SPRT)71 sampling plan
for classification based on entomological infection thresholds, as measured by simple random sampling of vectors. Results for a scenario with p0=
0.00005 (= 95% EPT L3 prevalence threshold) and p1= 0.0001 (= 5% EPT threshold), α= 0.05, β= 0.10 are presented. The cumulative total number of
sampling units (mosquitoes or black flies) assessed as infected (say using dissections) is denoted on the y axis. n is the cumulative total number of
sampling units assessed. Sampling units are observed sequentially and the cumulative total of those assessed as infected is noted. The criteria for cessation
of sampling are characterized by the two parallel straight lines (the stop lines) shown. The lower stop line corresponds to the critical infection threshold
(e.g., the 95% EPT L3 threshold prevalence), whereas the upper line denotes the emergence threshold (e.g., the 5% EPT L3 breakpoint prevalence value). If
the observed data fall below the lower stop line following cumulative sampling bouts, the appropriate decision is to cease sampling and accept the null
hypothesis (i.e., p≤ pCRIT(= 95EPT)). If the observed data fall between the two stop lines, sampling continues. If the data fall above the upper stop line, then
the appropriate decision is to accept the alternate hypothesis (interpreted as p≥ pCRIT). b Average Sampling number (ASN) curve for the sampling plan
described above, showing that sample sizes per sampling bout will be maximal (approximately= 350 randomly sampled vectors) close to the critical
prevalence adopted as a threshold value (i.e., p= 0.00005 in this case) and much smaller when p is substantially below or above pCRIT
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probabilities. We are investigating the application of Bayesian
logic involving the specification of a prior probability and infec-
tion importation probability at each time step of calculation, as
developed for the case of negative surveys56,57, as a means to
address the problem in the next stage of our work.

A third important need concerns how we might apply our
prediction framework to support the effective making of area-
wide freedom declarations. Although two-stage sampling strate-
gies could be used to account for village-level clustering of
infections, a more natural way forward, might be to couple maps
of infection with the PFFI utility to carry out area-wide proof of
freedom calculations based on the relative spatial distribution of
infection risk over an area of interest29,56. Such a spatially explicit
tool could also be used to determine the optimal spatial config-
uration of surveys and forecast the effort and costs necessary to
declare success.

Although a generalized filarial transmission model was exten-
ded to simulate the specifics of LF and onchocerciasis transmis-
sion in this study based on previously established population
models6,15,24–26,58–60 (see Methods), it is important to note that,
as for any model, new knowledge that would lead to refinements
of the transmission processes incorporated in current models
would result in changes to the breakpoint values used as design
prevalences in the present PFFI tool. In particular, we highlight
the important need to obtain better information on the various
positive density-dependent factors that govern breakpoint
thresholds in filarial infection, eg. functional form and operation
of host immunosuppressive responses, co-variation in Mf dis-
tributions between host and vector populations, and worm death
rate functions (see Methods)15,61,62, if better numerical values of
worm breakpoints are to be derived. These refinements would
impact the infection freedom probabilities calculated here to a
larger or smaller degree, further stressing the important need for
continual efforts to update complex models and validate their
predictions as new information regarding these processes arrive.

On a final note, we highlight that although our modelling
approach was developed for supporting decision-making for the
two diseases studied here, the developed framework is flexible and
can be easily made specific for other parasitic diseases and
management goals. This will be the case whether or not mathe-
matical models that allow estimation of breakpoint transmission
thresholds exist for these diseases, as in the absence of such
predictions traditional FFI calculations based on zero survey data
could still be used38. We are currently evaluating such enhance-
ments, particularly with regard to the spatio-temporal and eco-
nomic extensions required for (1) facilitating effective area-wide
disease freedom assessments and (2) optimizing economically
sound infection thresholds applicable to different settings, in our
laboratory.

Methods
Calculating infection freedom probability using models. Proving that a popu-
lation is free from a disease or infection is difficult, if not impossible, due to the
practical challenges of testing every individual and the limitations of diagnostic
tools. The use of structured surveys and analyses to demonstrate freedom from
infection must therefore rely on demonstrating a high probability that a population
is free from infection given features of sampling and the diagnostic tools used to
assess host infection status. Furthermore, it is not necessary to reduce infection
levels to zero before stopping interventions, as according to epidemic theory, there
exists a threshold infection prevalence below which transmission is no longer
sustainable and the system will tend towards a state of zero infection without
further intervention15. This theoretical threshold is termed as the infection
breakpoint and can represent the target infection level to cross below in order to
stop interventions. For surveys to determine infection freedom, this prevalence is
the infection level a survey is designed to detect with a known probability and is
termed the design prevalence8,9,43.

Probability calculations. Central to the freedom from infection analysis is the
estimation of whether the probabilities of the null (= infection is present at a level

equal to or greater than the design prevalence) and alternative (= infection is
present at a level less than the design prevalence) hypotheses differ significantly
given the observations of the survey and the characteristics of the diagnostic test.
The assessment of the null hypothesis (P0) is carried out by quantifying the
probability of observing x or fewer positive samples (T+) in a sample of size n with
disease prevalence equal to the design prevalence (p= pd), whereas the alternative
hypothesis (Pa) is evaluated via estimating the probability of observing x or more
positive samples in a population free of disease (p= 0). In general, using the
frequentist approach, the probability of getting x positive individuals, P(T+= x), in
a sample of size n with an infection prevalence equal to p is given by a modified
binomial distribution where the diagnostic test is considered to be imperfect with a
known sensitivity (Se) and specificity (Sp). Combining probabilities of observing
true and false positives given Se and Sp of a test, we obtain8:

P Tþ ¼ xð Þ ¼ n

x

� �
pSeþ 1� pð Þ 1� Spð Þ½ �x

p 1� Seð Þ þ 1� pð ÞSp½ � n�xð Þ

ð1Þ

This formula assumes an infinite population and calculates the probability of
sampling x positives in n samples with replacement. As many of the populations
relevant to disease monitoring sites are relatively small ( < 10,000 individuals in a
study area), we adjust the calculation to be appropriate for a finite population
where individual tests are not independent (probability of selecting x positives in n
samples without replacement). To achieve this, a hypergeometric distribution is
similarly modified8:

P Tþ ¼ xð Þ ¼ Pd
y¼0

d

y

� �
N � d

n� y

� �

N

n

� �

´
Pmin x;yð Þ

j¼0

y

j

� �
Sej 1� Seð Þy�j n� y

x � j

� �
1� Spð Þx�jSpn�x�yþj

ð2Þ

where d is the number of diseased individuals in a population of size N (d= p*N), y
is the number of diseased individuals in a sample of size n, x is the number of
individuals that test positive in the sample, and j is the number of true positives in
the sample and x−j is the number of false positives. The probabilities of the null
and alternative hypotheses given this distribution are calculated as:

P0 ¼
Px
i¼0

P Tþ ¼ ið Þwhere p ¼ pd

Pa ¼
Pn
i¼x

P Tþ ¼ ið Þwhere p ¼ 0
ð3Þ

In order to sufficiently substantiate the claim that a population is free from
infection, the probability of the null hypothesis must be low and the probability of
the alternative hypothesis must be high, according to the desired rates of Type I (α)
and Type II (β) error. For instance, if α and β are both set to 0.05, then we require
P0 ≤ 0.05 and Pa ≥ 0.95, in order to characterize a population as free from infection
at the desired confidence level. The probability of being free from disease is
therefore defined as:

P freeð Þ ¼ 1� P0 ð4Þ

In the event that the probabilities of both the null and alternative hypotheses are
high, there is insufficient evidence to conclude whether or not the population is free
from infection due to a small sample size8,11,23.

In order to conduct a PFFI analysis, the following details about the survey,
diagnostic tool, and analysis specifications are thus required as data inputs: N=
total population, n= number of individuals sampled, x= number of individuals
who test positive, pd= parasite transmission breakpoint (design prevalence), Se=
diagnostic sensitivity, Sp= diagnostic specificity, α= rate of Type I error, and β=
rate of Type II error. In the analyses conducted here, the inputs included the LF
and onchocerciasis Mf survey data and breakpoint thresholds (= design
prevalence) (Tables 1, 2), as well as the following specifications: α= 0.05 and β=
0.05, and Mf detection performance statistics for skin snip and blood smear
examination given by Se= 0.95, Sp= 0.95. It is noteworthy that the values chosen
for Se and Sp are somewhat arbitrary due to a lack of consensus on the
performance of these diagnostic tools31–37 and are applied here with the intention
of allowing a reasonable first demonstration of the use of the present tool. We
provide a R function that can be used to carry out these calculations in the
Supplementary Note 1.

The filarial transmission dynamics model. In this study, we employ a generalized
immigration-death model describing the transmission of filarial parasites in both
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human and vector hosts to carry out the LF and onchocerciasis modelling work.
We have previously described this model in detail for describing the transmission
and elimination of LF6,15,25,63 and we present the structurally similar oncho-
cerciasis model here for the first time. Briefly, this model simulates the population
level dynamics of various life stages of a filarial parasite in both human and vector
hosts via the use of coupled partial differential and ordinary differential equations
for describing changes in the pre-patent worm burden per human host ðPða; tÞÞ;
adult worm burden per human host ðWða; tÞÞ; the Mf level in the human host
ðMða; tÞÞ; the average number of infective L3 larval stages per vector (L), and a
measure of immunity ðIða; tÞÞ developed by human hosts against L3 larvae. The
state equations describing the model are as follows

∂P
∂t

þ ∂P
∂a

¼ ΦL�F1 I a; tð Þð ÞF2 WT a; tð Þð Þ
� μwP a; tð Þ �ΦL�F1 I a; t � τð Þð ÞF2 WT a; t � τð Þð Þζ
∂W
∂t

þ ∂W
∂a

¼ ΦL�F1 I a; t � τð Þð ÞF2 WT a; t � τð Þð Þζ � μwW a; tð Þ
∂M
∂t

þ ∂M
∂a

¼ F3 WT a; tð Þð Þ � γM a; tð Þ
∂I
∂t

þ ∂I
∂a

¼ WT a; tð Þ � δI a; tð Þ
L� ¼ F4 WT a; tð Þð Þ

ð5Þ

The state variables and parameters of this model for both LF and onchocerciasis
are provided in Supplementary Tables 2 and 3. Here we note that the term, Fx,
denotes the density-dependent functional forms that govern the transitions or
development rates of different parasite states in the life cycle. It is noteworthy that
some functions are dependent on the total worm load where WT(a,t)=W(a,t)+ P
(a,t), whereas others depend on larval states (L*) and host immunity (I). The
functional forms for the LF and onchocerciasis models are similar with two
primary differences: (1) in the onchocerciasis model, the larval death rate and
excess vector mortality due to infection is considered in F4, while these terms are
ignored in the LF model, and (2) the vector biting rate (a model parameter in the
function Φ) considers the number of bites per black fly to be equal to the human
blood index divided by the gonotrophic cycle while the number of bites per
mosquito is a standalone parameter in the LF model. The mathematical
representation of adult Onchocerca volvulus worm mortality has recently been a
topic of discussion64; here we use a constant mortality rate following the example
of Basáñez and Boussinesq58 and Filipe et al.59. Given that previous modelling
studies have underscored the potential for the involvement of either or both
acquired immunity and immunosuppression in filarial infections59,60, we include
both these types of immunity in our generic filarial models; however, it is worth
noting that we do not make any a priori assumptions concerning their occurrence
in the present study sites but instead use the Mf prevalence data to determine the
operation of each or both in each site. All other parameters appear in both models,
with each parameter’s value estimated using the corresponding field data for each
disease (full details provided in Supplementary Tables 2, 3).

Bayesian Melding fitting of the filarial models to data. Our data-driven mod-
elling approach is essentially based on integrating field data into the filarial models
in order to estimate models that can reliably capture the local transmission
dynamics in a particular setting. We employed a data assimilation-based inverse
modelling framework founded on the Bayesian Melding (BM) procedure to
undertake such model estimations using local human infection (Mf prevalence) and
vector-related transmission (ABR) data6,24–26 as follows. Briefly, we begin by using
known or uniformly assigned (if values are unknown) ranges in parameter values to
generate distributions of parameter priors. We then randomly sample with repla-
cement from these prior distributions to generate 200,000 parameter vectors, which
are then run using the ABR values, if given, for a site to generate model outputs. In
the event that baseline ABR information is not available, as is the case for the sites
modelled here, the ABR is sampled as one of the model parameters whose prior
uniform range is bounded to be reasonable for the given geographical setting. The
model outputs are then evaluated against the observed age-stratified Mf prevalences
by calculating the binomial log-likelihoods of each parameter vector for the data. In
the resampling step of the BM method, a Sampling-Importance-Resampling algo-
rithm is used to perform 500 draws with replacement from the pool of parameter
vectors generated in the step above, with probabilities proportional to their relative
log-likelihood values. This step generates the most likely parameter vectors or
models describing the data. These resampled parameter vectors are then used to
generate distributions of variables of interest (e.g., age-prevalence curves, worm
breakpoints and infection trajectories following treatments)6,25,26. It is noteworthy
that the use of this Bayesian data assimilation procedure means that the values of
none of the model parameters are fixed in advance; rather values are derived for a
site by allowing the corresponding data to select the best-fit posterior values from
initially set prior distributions for each parameter.

Hindcasting baseline conditions from post-intervention data. In some areas, no
baseline Mf prevalence or ABR information might be available and the first instance

of data may relate to a time after which treatments have already been administered.
In these cases, we used the model to hindcast baseline conditions by relying instead
on post-intervention data and details of the treatment programme. We initialize the
model by selecting 200,000 parameter vectors, which produce plausible baseline Mf
prevalence and ABR conditions (for instance, 5–60% LF Mf prevalence in Nigeria
with ABR values 500–5000). The ensemble of baseline simulations is then modelled
forward in time applying the appropriate interventions (see Supplementary Meth-
ods for details regarding the modelling of MDA in these sites). These outputs are
then resampled using a pass/fail filter65,66 to select the 500 models which most
closely follow the trends in Mf prevalence as given by post-intervention data. This
resampled subset of models is taken as the posterior sample of parameter vectors to
reproduce or hindcast the baseline infection/ABR values applicable in a given site26.

Calculations of site-specific transmission thresholds. A numerical stability
analysis approach was applied to each of the best-fitting parameter vectors in order to
calculate the TBR, as well as the distribution of Mf prevalence breakpoints expected in
a community6,15,24–26. To calculate the TBR for each parameter vector using this
method, we begin by keeping all model parameters constant and progressively
decreasing the average number of black flies (or mosquitoes) per human, m, from its
original value to a threshold value below which the model always converges to the
zero Mf prevalence. The product of the number of bites per fly per month, β, and this
newly found m value is termed as the TBR. Given a particular biting rate (either ABR
or TBR), the model will thus settle to either a zero or non-zero Mf prevalence
depending on the initial value of L*. Therefore, by starting with a very low value of L*
and progressively increasing it in small step sizes we estimate the minimum L* below
which the model predicts zero Mf prevalence and above which the system progresses
to a positive endemic infection state6,15,24–26. The corresponding Mf prevalence at this
threshold L* value is termed as the worm/Mf breakpoint. This process is repeated for
both the site-specific ABR and TBR as required.

The distribution of Mf breakpoints at a particular biting rate in a site can be
described by an inverse ECDF. We used this function, in conjunction with
exceedance calculations25, to quantify the values of Mf breakpoint prevalence
thresholds reflecting various elimination probabilities in a site. Here we used the
Mf threshold value corresponding to 95% elimination probability (the 95% EPT) as
the desired threshold value for serving as the design prevalence in all the PFFI
calculations reported.

The integrated PFFI tool. Figure 2 illustrates the components of our integrated
proof of parasite freedom tool that allows the coupling of infection survey data
from sentinel sites undergoing interventions with filarial transmission model
predictions of breakpoints, to facilitate the making of probabilistic freedom from
infection calculations. As shown by the diagram, the process begins by assembly of
surveillance data on both pre- as well as post-intervention infection prevalences
from monitoring sites. In the case of pre-intervention infection data, both the
vector biting intensity in the form of ABR and age-prevalences together with
sample sizes are ideally collated for each site, although we have developed model-
based procedures to estimate these data if only overall prevalence data are avail-
able66. In the second step, the filarial transmission models are fitted to the available
or estimated pre-intervention survey data using BM as described above, and the set
of best-fitting models for a site are then numerically evaluated to calculate infection
breakpoint values (for all relevant indicators, including Mf, ICT, and L3 prevalence,
as required) applicable to a particular site. In the third step, these breakpoint values
are used as design prevalences in the PFFI calculator in conjunction with post-
intervention infection prevalence survey data, to carry out calculations of the
probability that parasite infection freedom has been achieved using the statistical
methodology described above. Note, while we focus on site-specific PFFI calcula-
tions here, the method can also be extended across an entire spatial domain of
interest (e.g., by the application of two-stage sampling approaches9 discussed as a
possible method for evaluating area-wide malaria freedom by Stessman et al.38

recently, but see Discussion).

Infection survey data. We partnered with The Carter Center (TCC) to demon-
strate the application of the integrated PFFI tool for supporting declarations of
infection freedom in communities that have either received or are undergoing anti-
filarial interventions by using actual infection survey data from the TCC-supported
Onchocerciasis Elimination Programme in Uganda, as well as published and
unpublished surveillance data from the Nigerian LF Elimination Programme30.
Table 1 lists the onchocerciasis monitoring data evaluated in this exercise obtained
from two transmission foci in the country, one (Mt. Elgon focus) in which parasite
transmission by Simulium neavei67 has been declared to be interrupted by the
programme, and the other (Madi Mid North focus) in which transmission by
Simulium damnosum68 is considered to be currently ongoing. The transmission
status of a focus is defined by the programme based on stopping criteria adopted by
Uganda Ministry of Health, which requires the achievement of < 1% Mf prevalence
to demonstrate the elimination of morbidity, an absence of infection in children
younger than 10 years old and an absence of infected vectors for a period of 3 years
(S. neavei) or achieving L3 prevalence < 0.05% in the case of S. damnosum, to
confirm the interruption of transmission67. Data on Mf prevalence including
sample sizes were available at various follow-up times for the sentinel sites in each

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06657-5 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:4324 | DOI: 10.1038/s41467-018-06657-5 | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


focus, but although baseline infection data were available, sample sizes were
missing (Table 1). Random selection of subjects was followed at each infection
evaluation point. With regards to interventions, annual MDA using Ivermectin was
initiated and implemented in Mt. Elgon from 1994 to 2006, but treatments were
switched to bi-annual application from 2007 until 2011. In addition, vector control
using Abate was added to bi-annual MDA from the year 2007. All interventions in
the focus were stopped in the year 2011. In the case of Madi Mid North, by
contrast, annual MDA was initiated in the year 1995 and this remained the
mainstay of the programme in that focus to the present day. MDA coverage
information were also available. All Mf infection assessments were done using the
skin snip method.

The corresponding surveillance data describing changes in LF Mf infection
prevalence for sentinel villages that received > 8 years of annual MDA with
Ivermection and Albendazole in two example Nigerian regions where transmission
is primarily mediated by Anopheles mosquitoes30 are shown in Table 2. Annual
MDA began in different years in these villages, and data describing LF Mf
prevalences at baseline and at various intervention follow-up times together with
the applicable sample sizes were available for analysis. Nocturnal Mf assessments
were done using microscopy inspection of 60 μl thick smear blood samples30. MDA
coverages were also available for each site.

Code availability. The Matlab code for running the LF and onchocerciasis models
used in this work is available at https://github.com/EdwinMichaelLab/PFFI. The R
code used to calculate the probability of infection freedom at the modelled design
prevalence or parasite transmission breakpoint value given different diagnostic
tools and sample sizes used by surveys is given as a ready to run R function in
Supplementary Note 1.

Data availability
The authors declare that the data used in support of this study and its findings are
available within the paper and in the references pertinent to each dataset, or are available
from the authors upon request.
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