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Abstract

Although there is increasing importance placed on the use of mathematical models for the

effective design and management of long-term parasite elimination, it is becoming clear that

transmission models are most useful when they reflect the processes pertaining to local

infection dynamics as opposed to generalized dynamics. Such localized models must also

be developed even when the data required for characterizing local transmission processes

are limited or incomplete, as is often the case for neglected tropical diseases, including the

disease system studied in this work, viz. lymphatic filariasis (LF). Here, we draw on progress

made in the field of computational knowledge discovery to present a reconstructive simula-

tion framework that addresses these challenges by facilitating the discovery of both data

and models concurrently in areas where we have insufficient observational data. Using

available data from eight sites from Nigeria and elsewhere, we demonstrate that our data-

model discovery system is able to estimate local transmission models and missing pre-con-

trol infection information using generalized knowledge of filarial transmission dynamics,

monitoring survey data, and details of historical interventions. Forecasts of the impacts of

interventions carried out in each site made by the models estimated using the reconstructed

baseline data matched temporal infection observations and provided useful information

regarding when transmission interruption is likely to have occurred. Assessments of elimina-

tion and resurgence probabilities based on the models also suggest a protective effect of

vector control against the reemergence of LF transmission after stopping drug treatments.

The reconstructive computational framework for model and data discovery developed here

highlights how coupling models with available data can generate new knowledge about

complex, data-limited systems, and support the effective management of disease programs

in the face of critical data gaps.
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Author summary

As modelling becomes commonly used in the design and evaluation of parasite elimina-

tion programs, the need for well-defined models and datasets describing the nature of

transmission processes in local settings is becoming pronounced. For many neglected

tropical diseases, however, data for site-specific model identification are typically sparse

or incomplete. In this study, we present a new data-model computational discovery sys-

tem that couples data-assimilation methods based on existing monitoring survey data

with model-generated data about baseline conditions to discover the local transmission

models required for simulating the impacts of interventions in typical endemic locations

for the macroparasitic disease, lymphatic filariasis (LF). Using data from eight study sites

in Nigeria and elsewhere, we show that our reconstructive computational framework is

able to combine information contained within partially-available site-specific monitoring

data with knowledge of parasite transmission dynamics embedded in process-based mod-

els to generate the missing data required for inducing reliable locally applicable LF mod-

els. We also show that the models so discovered are able to generate the intervention

forecasts required for supporting management-relevant decisions in parasite elimination.

Introduction

The knowledge discovery, prediction, and forecasting capabilities offered by mathematical

models are making these tools central to the effective design and management of long-term

parasite control and elimination programs [1–6]. Growing collaborative efforts between mod-

elers and policy makers through channels such as the Neglected Tropical Disease (NTD)

Modeling Consortium highlight this critical role of parasite transmission models for support-

ing global health policy development and motivate their continued refinement [2]. This work

has shown how these models are useful for their ability to synthesize diverse sets of informa-

tion, to evaluate the likely outcomes of what-if scenarios that outline management options,

and to discover new knowledge about transmission and elimination dynamics [6–8].

However, there is also increasing recognition that parasite transmission models are useful

for management only if they can represent locality-specific infection dynamics adequately and

are able to generate reliable predictions of applied interventions in a particular setting [9–12].

This requirement implies that these models should accurately reflect the key biological and

ecological processes underpinning local parasite transmission through the reliable specifica-

tion of initial conditions, parameterizations, and the functional forms describing specific

transmission processes whose uncertainties are well-defined [13–15]. A growing theme is also

how best to discover or infer these input and latent variables from external observations so

that information contained within data can be reliably captured for mathematically recon-

structing local transmission dynamics [13,16–18]. This requirement suggests that improving

model predictive performance will ultimately depend on the development and application of

computational discovery systems that can construct suitable models from process information

contained in empirical data [19].

Data assimilation methods aim to improve model specification and performance by explic-

itly combining them with data such that models are suitably learned from empirical observa-

tions [13,15,17]. Such statistical techniques are widely used in ecological modeling to constrain

parameters and state variables to match reality as closely as possible before simulating out-of-

sample conditions [13,17]. Indeed, in our previous work we have demonstrated the value of
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data assimilation for improving knowledge of and for predicting the transmission and elimina-

tion dynamics of the vector-borne macroparasitic disease under study here, viz. lymphatic fila-

riasis (LF), a highly debilitating disease which is targeted for global elimination by the World

Health Organization (WHO) [9,10,20,21]. This work has demonstrated how, in addition to

improving model accuracy, data assimilation can also significantly decrease the uncertainty

associated with model predictions, highlighting a clear benefit of using these approaches for

policy applications that require both accuracy and precision [13,16,18,22].

A significant challenge in the ability to generate locally relevant predictions for LF (and

indeed all NTDs), however, is that the data available for the identification of location-specific

models is often sparse, incomplete, or missing. A major concern is uncertainty pertaining to

initial conditions because model predictability, even in the case of deterministic systems, are

highly sensitive to the values of the inputs describing the endemic disease state [14,23]. Previ-

ous LF modeling studies, for example, suggest that transmission thresholds, timelines to

achieve elimination, and the likelihood of infection reemergence all vary significantly accord-

ing to the undisturbed pre-control prevalence and mosquito biting rate [9–11,20,24,25].

Knowledge of baseline conditions is also essential for predicting trajectories of infection preva-

lence under pressure from interventions for assessing whether programs are progressing as

expected [4,5]. These considerations imply that modeling exercises that do not adequately

account for observed baseline conditions could have very limited forecast horizons and risk

making misguided predictions that undermine their utility for policy.

An example of a program facing critical data gaps is the LF elimination program in Nigeria.

The Carter Center (TCC), in partnership with the Nigerian Ministry of Health and interna-

tional donors, began administering their LF control (and eventually elimination) program in

2000 focusing on mass drug administration (MDA) using ivermectin (IVM) and albendazole

(ALB). Surveys were conducted to monitor and evaluate progress of the program at the start of

the LF program (1999–2000) and generally every year thereafter in representative sentinel vil-

lages (SVs) (a key geographical population entity used for program monitoring [26]). How-

ever, some Nigerian SVs are co-endemic for onchocerciasis and thus have unique prior

histories with MDA. TCC began preventative IVM+ALB treatments for LF after many years of

IVM monotherapy had already taken place for onchocerciasis. Because IVM also works against

Wuchereria bancrofti (the parasite responsible for LF in Nigeria), the “baseline” LF surveys do

not reflect the true pre-control prevalence. For areas such as these SVs, where there is no his-

torical data to guide the setting of initial boundary conditions, new computational approaches

that can mathematically reconstruct the prevailing transmission dynamics in a setting by gen-

erating both models and missing observations will be required to make useful predictions.

Here, our aim is to develop and investigate the utility of a novel reconstructive computa-

tional system to facilitate both the discovery of data and models in order to generate predic-

tions pertaining to LF elimination in areas where we do not have sufficient observational data

for model calibration. Our approach to overcoming the observed data limitations is essentially

to incorporate domain-specific knowledge of the system dynamics, so-called “common sense”

constraints, into the computational framework [8,27], and use the constrained models that are

identified using existing data for generating the key data that were previously unknown. The

consequent information about the local transmission system discovered by assimilating pro-

cess information contained in the generated and observed data into the mathematical model is

then employed for simulating the impacts of interventions [19].

Our discovery system has the following steps. First, we modified our previously developed

Bayesian Melding (BM) framework to estimate local LF models for eight study sites in order to

hindcast the unknown pre-control LF infection prevalence in each site. The modified calibra-

tion approach relied on the mechanistic understanding of parasite transmission dynamics
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represented in our general LF simulation model, information about historical treatments, and

longitudinal monitoring data collected during control programs [21,28]. The datasets

employed for carrying out this exercise represent five TCC-supported SVs in Nigeria and an

additional three SVs from other global endemic regions. We then use the estimated site-spe-

cific models along with the hindcasted baseline information to 1) calculate location-specific

transmission thresholds and 2) to simulate the impact of MDA and vector control (VC) inter-

ventions in each setting based on observed or estimated population coverages. Five of the eight

study sites had pre-control data available and thus served as validation cases from which we

determined the relative information loss associated with calibrating the model without base-

line data. The results indicate that there is a trade-off between predictive performance and

uncertainty in initial conditions, but, importantly, that the predictions were still useful for pro-

gram management purposes. Overall, the reconstructive computational discovery system

developed in this study points to how a modelling platform that allows the complementary

identification of mathematical models and data can serve as a vital tool for addressing knowl-

edge gaps and making policy relevant predictions even in the face of significant uncertainties

and missing data.

Methods

Study site descriptions

The application of the computational framework developed in this study is dependent on the

characteristics of the observational data available for a given study site. For demonstrative pur-

poses, longitudinal epidemiological data collected by TCC from five SVs in Plateau and Nasar-

awa states in Nigeria were selected for this modelling study based on data availability and

overall representativeness of endemicity and control history. Three additional sites from Tan-

zania, Egypt, and Papua New Guinea (PNG) were also included to introduce diversity in the

transmission settings [29–33]. Details regarding survey methodologies and data aggregation

are given in S1 File.

In central Nigeria, LF is caused by the parasite Wuchereria bancrofti, carried by Anopheles
gambiae and An. funestus mosquitoes [34]. Surveys were conducted to monitor and evaluate

progress of the program at baseline (1999–2000) and generally every year thereafter in the SVs.

SVs in Nasarawa and Plateau states were selected based on their representativeness in terms of

baseline prevalence, onchocerciasis co-endemicity (or non-endemicity), and prior experience

with MDA. Village residents and leadership also had to be willing to participate in annual noc-

turnal blood surveys for an indefinite period of time. Both serologic (circulating filarial antigen

(CFA) as determined by immunochromatographic test (ICT)) and parasitologic (nocturnal

blood slides stained and read for microfilaremia (mf)) indicators were monitored annually.

Three of the Nigerian SVs considered in this study (Seri, Gbuwhen, and Maiganga) are co-

endemic for onchocerciasis and thus have unique histories with MDA. TCC began preventa-

tive IVM+ALB treatments for LF in Gbuwhen in 2000 and in Seri and Maiganga in 2001 fol-

lowing 6–9 years of IVM monotherapy for onchocerciasis (Table 1). Because IVM also works

against W. bancrofti, the baseline LF surveys do not reflect the pre-control prevalence. To

model transmission in these SVs, it was therefore necessary to hindcast the probable pre-con-

trol conditions using our reconstructive computational approach based on model calibration

using only mid-MDA data. An outline of the overlapping onchocerciasis and LF activities are

given in Table A in S1 File for Seri as an example of this situation.

We used the other two Nigerian SVs (Dokan Tofa and Piapung) plus the three global sites

(Kirare, Tanzania, Giza, Egypt, and Usino Bundi, PNG) to evaluate the capability of our meth-

odology to hindcast endemic conditions. Unlike the previously described settings, each of
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these sites are endemic for LF only and have baseline data that represent the true pre-control

prevalence suitable for facilitating validations of the model-estimated baseline infection data.

Both mf and CFA were monitored in each site throughout the MDA programs (Tables B and

C in S1 File).

Insecticide-treated nets (ITNs) and long-lasting insecticide treated nets (LLINs) were dis-

tributed periodically in central Nigeria throughout the 2000s by the local government and

international bodies like TCC. ITNs were introduced in Seri in 2004 and LLINs were distrib-

uted in all five Nigerian SVs in 2010. Bednet coverage was assumed to be 80.4% for Seri and

50% for the other four Nigerian SVs based on program estimates. Early evidence suggests that

these interventions are indeed synergistic in central Nigeria [35–37]. In PNG, the vector

responsible for transmission is An. Punctulatus, and we assumed LLIN coverage of 40% in

Usino Bundi based on regional bednet usage statistics [38]. ITN usage in Kirare, Tanzania was

estimated to be much lower, around 25%, as large scale distribution did not occur until later in

the control progam in this region [30]. In Kirare, transmission was predominantly mediated

Table 1. Monitoring epidemiological survey data and intervention details for Seri, Gbuwhen, and Maiganga, Nigeria.

Village Seri Gbuwhen Maiganga

Year % mf

prevalence

(no. sampled)

% CFA

prevalence

(no. sampled)

MDA Coverage

(% population)

(regimen)1

% mf

prevalence

(no. sampled)

% CFA

prevalence

(no. sampled)

MDA Coverage

(% population)

(regimen)1

% mf

prevalence

(no. sampled)

% CFA

prevalence

(no. sampled)

MDA Coverage

(% population)

(regimen)1

1992 - - N/A - - 52.4 (I) - - 70.3 (I)

1993 - - N/A - - 47.8 (I) - - 85.8 (I)

1994 - - N/A - - 41.8 (I) - - 85.6 (I)

1995 - - 77.1 (I) - - 67.5 (I) - - 89.5 (I)

1996 - - 77.7 (I) - - 89.1 (I) - - 94.6 (I)

1997 - - 79.3 (I) - - 85.8 (I) - - 77.4 (I)

1998 - - 79.1 (I) - - 51.9 (I) - - 84.6 (I)

1999 - - 68.4 (I) - - - (I) - - 73.6 (I)

20002 - - 75.2 (I) - - 68.4 (I+A) - - 74.1 (I)

2001 - - 74.1 (I+A) - - 62.7 (I+A) - - 85.3 (I+A)

2002 - - 76.7 (I+A) - - 49.6 (I+A) - - 81.6 (I+A)

20033 10.6 (527) 33.7 (528) 78.2 (I+A) 3.7 (508) 13.5 (510) 98.7 (I+A) 4.8 (478) 15.2 (587) 79.8 (I+A)

2004 11.3 (97) 22.4 (474) 79.3 (I+A) 1.8 (446) 5.2 (446) 93.9 (I+A) 5.3 (286) 15.3 (-) 82.8 (I+A)

2005 1.6 (321) 13.0 (150) 78.1 (I+A) 0.3 (286) 4.5 (178) 96.6 (I+A) 3.0 (169) 20.6 (165) 90.5 (I+A)

2006 1.3 (157) - 75.9 (I+A) 0.5 (183) - 92.5 (I+A) 5.6 (126) - 91.5 (I+A)

2007 0.8 (133) 22.6 (385) 87.4 (I+A) 0.0 (197) 6.4 (127) 91.8 (I+A) 0.6 (158) 19.2 (109) 92.8 (I+A)

2008 2.7 (110) 8.2 (110) 75.0 (I+A) 0.0 (127) 0.0 (175) 93.9 (I+A) 1.8 (109) 1.8 (152) 72.9 (I+A)

2009 0.0 (258) 10.5 (258) 85.1 (I+A) 0.0 (175) 0.6 (-) 79.3 (I+A) 0.6 (152) 7.9 (-) 89.7 (I+A)

2010 1.1 (268) 12.7 (268) - (I+A) 0.0 (-) 1.0 (-) - (I+A) 0.0 (-) 11.7 (-) - (I+A)

2011 0.0 (211) 3.3 (211) - (I+A) 0.0 (-) 0.8 (-) - (I+A) 0.0 (-) 3.0 (-) - (I+A)

2012 - - 78.7 (I+A) - - - (I+A) - - - (I+A)

2013 - - 79.7 (I) - - - (I) - - - (I)

2014 - - 79.7 (I) - - - (I) - - - (I)

2015 - - 79.8 (I) - - - (I) - - - (I)

2016 - 0.0 (74) - (I) - - - (I) - - - (I)

N/A not applicable;—not available
1 I: ivermectin, A: albendazole
2Baseline mapping surveys for LF were conducted in 2000
3 First instance of age-stratified monitoring data, see Table 6 in S1 File

https://doi.org/10.1371/journal.pcbi.1007506.t001
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by An. gambiae and An. funestus during pre-MDA surveys [30]. We therefore assumed Anoph-
eles transmission for modeling purposes, but note that Culex quinquefasciatus was also present

and that species composition studies indicated that the Culex mosquitoes were dominant by

the end of the MDA program [30]. Culex pipiens mosquitoes are responsible for transmission

in Giza, Egypt and bednets are not prevalent [32].

Computational system for data and model discovery

Here, we outline the workflow underpinning our novel reconstructive computational discov-

ery framework for generating local infection data and models simultaneously (Fig 1). We

begin by noting that predictions arising from dynamical models, even in the case of determin-

istic models, are invariably highly dependent on initial conditions [14,23], and thus, in the

absence of empirical data describing baseline infection prevalence, it is crucial that we first

accurately estimate this key information if we are to simulate control and elimination depend-

ably. A computational discovery system must therefore be capable of facilitating the generation

of such missing data by taking advantage of the knowledge contained within process models

fitted to training datasets. Here, we accomplished this step by adapting our previously devel-

oped Bayesian Melding (BM) data assimilation methodology that originally was used to iden-

tify an ensemble of locally acceptable models by calibration of model parameters (Table D in

S1 File) to baseline site-specific infection data collected by control programs [9,20,21,39–41].

In the absence of such baseline data, we modified the approach to first calibrate the model

parameters using post-intervention mf and CFA monitoring data collected during MDA pro-

grams (see calibration steps 1–3 in Fig 1). Then, using the fitted models, we reconstructed new

information on the pre-control prevalence before proceeding to predict the relevant quantities

Fig 1. Computational system for discovering local infection data and transmission models. Green boxes represent

model calibration steps, orange boxes represent the quantities of interest calculated by the fitted model, and blue boxes

indicate the site-specific data needed for the indicated step.

https://doi.org/10.1371/journal.pcbi.1007506.g001
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of interest, including estimating transmission endpoints and performing simulations of the

expected impacts of interventions programs (see quantities of interest in Fig 1). Fig 1 summa-

rizes the calibration (or model discovery), data generation, and modelling steps involved in

applying the computation system, while also highlighting the site-specific training and inter-

vention data needed to carry out each of these steps. Full details of the mathematical model,

calibration procedures, and methods for calculating these variables are as given below.

Mathematical model of LF transmission. The mathematical model used in this study

describes the population dynamics of LF infection through a series of coupled differential

equations representing the immigration-death processes of parasite life stages in the human

and vector hosts. The technical details of the model and its implementation have been previ-

ously explained in detail elsewhere [9]. The state variables representing parasitic infection in

the human host are given as coupled partial differential equations representing pre-patent

worm burden (P), patent worm burden (W), microfilariae density in 1 mL blood (M), circulat-

ing filarial antigen intensity (A), and a measure of immunity (I), each of which are integrated

over age of the human host (a) and time (t). A single state variable describing the L3 larvae

density in the mosquito host (L) is formulated as an ordinary differential equation integrated

over time (t), and this stage is assumed to reach equilibrium quickly (L�) owing to the faster

time scale of infection dynamics in the vector compared to the human. The state equations are

given below and all model parameters and full functional forms are given in Tables D and E in

S1 File.

@P
@t
þ
@P
@a
¼ l

V
H
h að ÞO a; tð Þ � mP a; tð Þ � l

V
H
h að ÞO a; t � tð Þz

@W
@t
þ
@W
@a
¼ l

V
H
h að ÞO a; t � tð Þz � mW a; tð Þ

@M
@t
þ
@M
@a
¼ as�W a; tð Þ; k½ �W a; tð Þ � gM a; tð Þ

@I
@t
þ
@I
@a
¼ WT a; tð Þ � dI a; tð Þ

@A
@t
þ
@A
@a
¼ a2W a; tð Þ � g2A a; tð Þ

dL
dt
¼ lkg

Z

pðaÞð1 � f ½Mða; tÞ�Þda � sþ lc1ð ÞL

L� ¼
lkg

R
pðaÞð1 � f ½Mða; tÞ�Þda

sþ lc1

Initializing the model in the absence of baseline data. First, uniform prior distributions

were defined for each of the model parameters (Table D in S1 File). Reasonable boundaries on

the baseline variables to be hindcasted were also pre-determined. We considered 5–50% mf

prevalence and 500–15,000 bites per person per year to be plausible values in this regard

[34,42–46]. The model was then initialized by repeatedly sampling parameter vectors (each

consisting of a random draw of each of the model’s parameters) until a set of N = 200,000

parameter vectors that met the following criteria was sampled: 1) the distribution of
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community mf prevalence values predicted by the parameter vectors was uniform, and 2) the

output mf prevalence values ranged from 5–50%.

Pass/fail model selection based on mid-MDA data. Then, using the model parameter-

ized with each of the N parameter vectors, we simulated the observed site-specific interven-

tions (see intervention modelling details below), resulting in N trajectories of mf and CFA

prevalence over time and age. The N Monte Carlo simulations were resampled to select only

those models that were considered behavioral as determined by a pre-defined binary (pass/

fail) criteria of fit described below [41]. This pass/fail resampling approach was previously

described for our model in Smith et al. (2017) for a single model output (mf prevalence) [40].

Here, we apply the same criterion of fit jointly to both mf and CFA indicators as follows. The

N model-generated mf and CFA prevalence trajectories were judged against the observed fol-

low-up prevalence data from a single mid-MDA survey. Parameter vectors were retained only

if the corresponding age-stratified mf and CFA prevalence for the given survey year fell within

the 95% binomial confidence intervals of the age-stratified data for more than j-2 data points

(where j is the number of age groups for which there is prevalence data). This step produced a

reduced set of n parameter vectors. Formal goodness of fit of discovered models for data was

evaluated by calculating the Monte Carlo p-value as described in [21].

The mid-MDA survey year used for model resampling varied by site according to the char-

acteristics of each unique dataset, and age-stratified data was prioritized when choosing a sur-

vey. For Seri, Gbuwhen, and Maiganga, the prevalence data from 2003 was used for model

selection because age-stratified data was available for both indicators (Table F in S1 File). No

age-stratified data from a mid-MDA survey was available in the other sites, so an age profile

was derived from the overall prevalence data and national age demographic information as

described previously [40]. In these sites, the mid-MDA survey used for resampling was selected

based on the following criteria: at least two rounds of MDA must have had already occurred,

data was required for both mf and CFA indicators, the prevalence values must have been

greater than 2%, and there needed to remain at least two later surveys in the dataset that could

be used for model validation. For Dokan Tofa and Piapung, the first survey year that met this

criteria data was used (2007 and 2005, respectively). For Kirare, Giza, and Usino Bundi, the

surveys from years four, three, and two were selected, respectively.

Once a subset of n models had been selected, we further trimmed the ensemble of models

to improve computational efficiency and predictive performance [47]. We grouped the n
selected models according to hindcasted baseline mf and CFA prevalence into bins at 5% inter-

vals (5–10%, 10–15%, etc.) and calculated the relative contribution of each bin to the overall

ensemble (i.e. the proportion of models falling in a given interval). If any bin contributed less

than 10% of the total number of models to the ensemble, the models falling in that bin were

discarded as the least likely to represent the baseline conditions. This final set of m site-specific

models was used to hindcast the pre-control baseline conditions and then calculate desired

model outputs such as transmission breakpoints and timelines to achieve elimination.

Calculating transmission breakpoints. A previously developed numerical stability analy-

sis for calculating site-specific transmission breakpoints was conducted for each of the m pos-

terior parameter vectors, producing a distribution of mf breakpoints and threshold biting rates

(TBRs) for each site [9,20]. The thresholds are dependent on the mosquito biting rate which

can range from the prevailing ABR that has given rise to endemic conditions to zero (theoreti-

cally) in the presence of vector control (VC). Because most of the study sites used VC, we cal-

culated the breakpoints at both the ABR and the model-estimated TBR. The target endpoint

used to calculate elimination timelines represents a 95% probability of elimination and was

derived from the empirical inverse cumulative density function describing the site-specific mf

breakpoint distribution.
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Modelling MDA and vector control interventions. The model formulation for simulat-

ing MDA and bednets has been previously described in full and is presented in the S1 File [9].

MDA with IVM and IVM+ALB was modeled as having an instantaneous killing effect on

adult worms and microfilariae (ω and ε, respectively) as well as sterilizing adult worms for a

period of months (p). Because there lacks strong data for ω, this parameter was sampled from

a uniform prior along with the other model parameters (Table D in S1 File). VC by ITNs and

LLINs deters mosquitoes from entering the home, prevents them from feeding on humans,

and kills them [48,49], the effects of which were modeled by dynamically reducing the biting

rate according to the ITN and LLIN coverage and efficacy.

We modeled the observed MDA and VC interventions in each site and compared the pre-

dictions to the observed survey data. A survey of MDA coverage in Nigeria suggested that the

recorded coverage could be higher than actually achieved [34]. Therefore, the coverage mod-

eled for each round of MDA was sampled from a uniform distribution representing 75–100%

of the reported population coverage. Where data was not available, we assumed a value for

MDA coverage equal to the average of the population coverage achieved in the previous

rounds.

Calculating elimination and resurgence probabilities. In addition to the observed inter-

ventions, we also modeled hypothetical scenarios where MDA interventions were stopped at

either the WHO-recommended 1% mf threshold or at the model-estimated mf breakpoint.

The observed MDA coverage was applied for each round. In cases where additional rounds of

MDA beyond those that were actually observed were needed to reach the given thresholds,

annual MDA was continued at a coverage of 65% (the minimum coverage required by the

WHO [26]). After stopping MDA interventions, we continued the simulations with VC only

for an additional 10 years to estimate the prevalence during and after the requisite 5-year sur-

veillance period. We then calculated elimination and resurgence probabilities in each site.

Elimination was considered to have been achieved by those model trajectories that predicted

mf prevalence would continue to decline in the years following the end of surveillance (indi-

cated mathematically by a negative slope between five years and 10 years after stopping MDA).

Conversely, resurgence was considered to be expected by those model trajectories that pre-

dicted mf prevalence would increase in the years following surveillance (indicated by a positive

slope).

Model performance

For sites where baseline infection data was available (Dokan Tofa, Piapung, Kirare, Giza, and

Usino Bundi), the model was also calibrated directly to site-specific baseline infection data

using our Bayesian Melding data assimilation framework [9]. Results from these models served

as a comparison to the hindcasted models in order to evaluate the performance of the latter

models. The model calibration steps are notably simpler in this case. First, N = 200,000 param-

eter vectors were randomly drawn from their uniform priors and used to estimate baseline age

stratified mf and CFA prevalence. Then, these model outputs were judged against the observed

baseline mf and CFA data using the binary criteria of fit as described above. This ensemble of

models was then used to simulate the impact of interventions and produce estimates of interest

such as transmission endpoints and timelines to achieve elimination for a given site.

The predictions from the hindcasted models were compared to the predictions from the

models fitted directly to baseline data to quantify the trade-offs associated with calibrating the

models without baseline data. The relative information lost as a result of missing baseline data

was defined as I = Hb−Hh where H measures the entropy, or uncertainty, associated with the

baseline mf prevalence estimates, Hb denotes predictions from the model fitted directly to
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baseline data, and Hh signifies predictions from the hindcasted model fitted to mid-MDA data.

The Shannon information index was used to measure entropy, H, as follows: H ¼ �
Pm

i ¼ 1

pðxiÞlog2pðxiÞ, where p(xi) is the discrete probability density function of the baseline mf preva-

lence predicted by the given model, and is technically estimated from a histogram of the

respective model predictions for k bins (of equal width in the range between the minimum

and maximum values of the PDFs) [22,50]. A smaller value of H indicates less uncertainty.

Results

Using the computational framework described above, we aimed to learn new knowledge about

local LF transmission systems through the combination of data and model discovery. To over-

come the lack of baseline data, we developed a new approach that provides flexibility for both

hindcasting and forecasting by applying domain knowledge and common sense constraints

where key data was missing. We evaluated the framework’s ability to fill in data gaps, specifi-

cally hindcasting the unknown baseline conditions, and predict the impacts of interventions.

We further used the fitted models for estimating variables pertinent to elimination programs

such as transmission breakpoints and elimination and resurgence probabilities.

Validating the computational framework for hindcasting baseline conditions

To validate the new approach for calibrating the model without baseline data, we applied the

Bayesian Melding framework described above [9] to the five sites that have pre-control data

available for comparison (Dokan Tofa, Piapung, Kirare, Giza, and Usino Bundi). Note that we

modeled these sites assuming the baseline data was not available, i.e. the model was not given

this information. The model fits to the training mid-MDA mf and CFA survey data are given

in Fig A in S1 File and the corresponding hindcasts of the likely baseline conditions are shown

as age-prevalence curves in Fig 2. Note that since age-stratified infection profiles were derived

from the overall community prevalences estimated in these sites, some uncertainty is intro-

duced into these hindcasts. However, comparison of the model hindcasts against the respective

observed baseline infection data show that the generated hindcasts capture the observed data

in each site well (overall Monte Carlo p-values >0.9, indicating no significance difference with

the data). Other than CFA in Usino Bundi, the ensemble of model hindcasts overlaps with all

of the observed data points and their 95% confidence intervals.

We also compared the predictions coming from the models fit using the new computational

approach in the absence of baseline to those coming from models fit directly to baseline data.

This was done using the data from the five sites that had pre-control infection data available.

Entropy calculations indicate that information is lost by fitting the model without baseline

data (Table 2). However, the model fits to baseline data (Fig B in S1 File) are visually similar to

the hindcasted baseline estimates (Fig 2). The breakpoint distributions are also similar between

the two fitting procedures (Fig C in S1 File) and Kruskal-Wallis tests indicate that there is not

always a statistically significant difference in breakpoint distributions (Table G in S1 File).

Similarly, the median predicted timelines to reach 1% mf do not differ, although the ranges do

in some cases (Table H in S1 File). These results suggest that while there is some loss in model

performance by fitting using the new hindcasting procedure, the procedure is still reliable to

use in cases where no baseline data is available.

Hindcasting baseline conditions in sites without pre-control data

With the confirmation that the hindcasting procedure can reasonably estimate baseline conditions,

we calibrated the model to the three sites where no baseline data was available (Seri, Gbuwhen, and
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Fig 2. Model hindcasts of baseline mf and CFA infection prevalence compared to observed survey data. Each row

of plots give the mf (left, blue curves) and CFA (right, purple curves) age prevalence for the given site at baseline. The

curves represent the model-predicted infection by age compared to the observed (squares) or derived (plateau as

crosses and convex as circles offset to visualize differences) age infection profiles. For all sites except CFA in Usino

Bundi, the ensemble of curves passed through all of the data points indicating an accurate estimate of the baseline

prevalence. Monte-Carlo p-values for assessing goodness of fit were>0.9 in each case.

https://doi.org/10.1371/journal.pcbi.1007506.g002
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Maiganga). The model fits to the 2003 mid-MDA age profile data are given Fig 3 and demonstrate

that the model was able to accurately capture the infection profiles after many years of treatment

had already occurred (Fig 1, calibration step 3). The selected parameter vectors from this fitting

procedure were used to reconstruct the baseline mf and CFA age prevalence patterns (Table 3, Fig

D in S1 File). The hindcasts suggest that the baseline mf prevalence was 48% (95% CI: 44–52%) in

Seri, 30% (95% CI: 16–47%) in Gbuwhen, and 45% (95% CI: 33–52%) in Maiganga. Similarly, the

model-estimated CFA prevalence at baseline was 73% (95% CI: 61–89%) in Seri, 77% (95% CI: 60–

91%) in Gbuwhen, and 50% (95% CI: 18–69%) in Maiganga. Note that the relationship between

mf and CFA predicted in Maiganga is not as we would expect. CFA prevalence was sometimes esti-

mated to be lower than mf prevalence which is atypical and is reminiscent of the results seen for

Usino Bundi where the model-estimated CFA prevalence was also lower than observed.

Site-specific breakpoints calculations

We calculated LF mf breakpoints at both the ABR and the model-estimated TBR given that the

value at TBR in sites where VC was used is required when modelling timelines to elimination

in these settings [10]. The mf breakpoint representing a 95% elimination probability was calcu-

lated using an empirical inverse cumulative density function, and the site-specific values are

given in Table 4. The values at TBR are statistically significantly higher than those at ABR

(Kruskal-Wallis tests for each site, p-values < 2.2 e-16). The estimated mf breakpoint distribu-

tions also differed significantly between sites, indicating the existence of important between-

site transmission heterogeneities (Kruskal-Wallis tests for breakpoints at ABR and TBR, p-

values< 2.2 e-16). Practically, these differences were found to be more meaningful at TBR

than at ABR and, in both cases, indicate that LF transmission thresholds in reality could be

markedly lower than the WHO-recommended 1% mf threshold.

Modelling the impact of site-specific MDA and vector control interventions

We used the site-specific transmission models to simulate the impact of the observed MDA

and VC interventions in each site. Fig 4 shows the model-predicted mf and CFA prevalence

over time compared to the longitudinal survey data collected in each site. The model predic-

tions accurately reflect the observed changes in prevalence over time, further validating that

the new model calibration approach developed in this study can accurately select site-specific

parameter vectors based solely on data from a mid-MDA survey.

Elimination and resurgence probabilities

The probabilities of elimination and resurgence are important metrics for evaluating the suc-

cess of an elimination program. We calculated these values for each site given two scenarios: 1)

Table 2. Entropy of model fits to baseline data compared to model hindcasts of baseline.

Village Entropy of model-predicted baseline mf prevalence Relative

Information loss (%)Direct fit

to baseline

data

Hindcasted

baseline

Dokan Tofa 9.6 13.0 -35

Piapung 9.9 12.6 -26

Kirare 9.0 13.3 -43

Giza 9.0 10.0 -11

Usino Bundi 9.3 9.6 -2

https://doi.org/10.1371/journal.pcbi.1007506.t002
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Fig 3. Model fits to 2003 mid-MDA mf and CFA survey data. Each row of plots give the mf (left, blue curves) and

CFA (right, purple curves) age prevalence fits for the given site to data from the first LF survey in 2003 (after years of

MDA for onchocerciasis had already occurred). The curves represent the model-predicted infection by age compared

to the observed age infection profiles (black points with 95% confidence intervals).

https://doi.org/10.1371/journal.pcbi.1007506.g003

Table 3. Model-predicted age-stratified mf and CFA prevalence (median and 95% CI) for Seri, Gbuwhen, and Maiganga, Nigeria in 20031.

Seri Gbuwhen Maiganga

Age group mf prevalence

(%)

CFA prevalence

(%)

Mf prevalence

(%)

CFA prevalence

(%)

Mf prevalence

(%)

CFA prevalence

(%)

0–9 11.2 (7.3–16.3) 15.9 (9.1–27.3) 5.8 (2.3–13.5) 15.7 (8.4–27.7) 10.5 (5.5–18.5) 8.9 (2.7–18.8)

10–19 49.4 (41.1–56.7) 61 (44.8–80.7) 29.5 (14.1–50.8) 61.7 (42.2–80.9) 46.7 (31.6–56.1) 37.8 (13–58.2)

20–29 62 (57.4–66.9) 73.2 (59.8–88.3) 40.7 (23.3–61.1) 76.1 (58.5–90.7) 57.3 (43.6–65.8) 49 (16.9–67.4)

30–39 63.2 (57.8–70) 74 (62.1–88.5) 43 (26–63.3) 78.6 (60.7–92.5) 58.2 (42.3–68.8) 49 (17.9–68.7)

40–49 62.8 (53.7–71.7) 73.8 (61.7–89.2) 43.5 (26.4–64.1) 79 (60.2–93.3) 58.2 (42.3–69.6) 49.2 (17.9–69.7)

50–59 62.6 (50.6–72.6) 73.7 (60.1–89.9) 43.6 (26–65) 79.2 (59.5–93.8) 58.2 (41.6–70.6) 48.7 (18–70.8)

60+ 62.3 (48.3–73.3) 74 (57.3–90.4) 43.7 (25.4–65.8) 79.2 (58.6–94.2) 58.3 (40.3–71.4) 48.8 (18.1–71.2)

1 2003 represents the first LF survey conducted in these sites, but many rounds of MDA had already occurred under the onchocerciasis control programs here. See

Table 1 for complete context.

https://doi.org/10.1371/journal.pcbi.1007506.t003
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MDA is stopped once interventions have reduced the mf prevalence below the WHO 1% mf

threshold, and 2) MDA is stopped once interventions have reduced the mf prevalence below

the model-estimated site-specific mf breakpoint. In both cases, the use of bednets is assumed

to continue beyond the MDA program in those sites where bednets were already present (i.e.

all sites except Giza).

The results are given in Table 5. In six sites, the observed MDA program completed enough

rounds of MDA (or more) to reach the WHO threshold. This resulted in high probabilities of

elimination and low probabilities of resurgence. It is important, however, to note in this case

that the use of VC protects against resurgence. The absence of this protective effect is seen in

Giza where, despite having achieved the WHO threshold, there is only a 24% probability of

elimination and consequently a 76% chance of resurgence. Conversely, all other sites that

incorporated VC into their elimination programs were shown to have less than 10% probabil-

ity of resurgence after MDA is stopped. However, if Giza were to continue MDA until reaching

the model-estimated mf breakpoint, the risk of resurgence decreases to just 1%. These results

highlight two important features of elimination dynamics: 1) that the WHO mf threshold may

not be low enough to prevent resurgence after MDA is stopped, and 2) that supplementing

MDA with VC can protect against resurgence. The results are also highly promising for the

Nigerian sites. All five SVs studied here were predicted to have greater than 95% probability of

elimination due to long term MDA and the use of LLINs. By contrast, Kirare, Giza, and Usino

Bundi may have not completed enough rounds of MDA to ensure high probabilities of

elimination.

Discussion

Our fundamental focus in this study was to address the problem of how best to induce reliable

parasite transmission models from data typically measured by control programs so that better

policy-relevant forecasts of the impacts of interventions can be made. Data available from

health agencies for model induction or discovery is often limited and may exhibit major gaps,

as in the case of our Nigerian LF case study where many SVs do not have baseline parasite

infection data available to inform initial conditions. Drawing on advances made in the field of

computational knowledge discovery [8,19,51], particularly the notion that simulation models

can serve as epistemic tools for reconstructing the natural systems under investigation [52], we

posited that a computational system that would allow for both the generation of missing data

as well as the identification of models based on prior knowledge of transmission structures

and processes could facilitate solving this discovery problem. Here, we show specifically how a

reconstructive computational system that combines data-assimilation with “common-sense”

constraints to initialize models [8,27] can provide a powerful framework for generating the

Table 4. Site-specific mf breakpoints representing 95% elimination probability at either ABR or TBR.

Village at ABR at TBR

Dokan Tofa 0.0097 0.3252

Piapung 0.0096 0.3477

Kirare 0.0086 0.7548

Giza 0.0010 0.2254

Usino Bundi 0.0102 0.4496

Seri 0.0072 0.7556

Gbuwhen 0.0080 0.5696

Maiganga 0.0054 0.4035

https://doi.org/10.1371/journal.pcbi.1007506.t004
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missing pre-control baseline information [21,28], which is critical for inducing locally-relevant

infection models. Using the computational discovery system developed in this study, we suc-

cessfully hindcasted the unknown pre-control LF prevalences of three SVs, estimated the

Fig 4. Model forecasts of post-intervention mf and CFA prevalence compared to observed survey data. Each row

of plots give the model-predicted mf (left, blue curves) and CFA (right, purple curves) prevalence over time during the

site-specific MDA program. Black points represent the surveyed prevalence with the corresponding 95% confidence

intervals.

https://doi.org/10.1371/journal.pcbi.1007506.g004
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relevant locality-specific LF models, and generated new knowledge regarding breakpoints and

durations of various interventions required to eliminate this major parasitic disease in differ-

ent endemic settings. These results indicate that it will be beneficial for modellers to consider

the construction and use of similar knowledge discovery platforms that take advantage of both

1) the information about a setting’s particularities that is contained within partially available

data and 2) prior information about the transmission dynamics of a particular disease in order

to specify appropriate models for making the predictions needed to guide policy making [5].

Our first contribution in this study is to demonstrate how the new reconstructive computa-

tional data-model discovery system was able to identify local transmission models and recon-

struct the pre-control endemic status of LF in a site by using generalized knowledge of filarial

transmission dynamics, plausible baseline conditions, mid-MDA survey data, and details of

historical interventions. The model hindcasts of the baseline mf and CFA prevalence matched

the observed data well in the validation sites, highlighting the ability of this framework to reli-

ably fill in data gaps across various LF endemic regions and under different intervention pro-

grams (Fig 2). Because the model was fitted primarily to monitoring data collected during

MDA, this outcome is supportive of our previous conclusion that LF transmission parameters

may be relatively stable over the course of typical MDA programs [21]. Such stability implies

that the boundaries of local transmission dynamics are set by the initial conditions, which may

largely remain unchanged, and that monitoring data can contain sufficient information for

identifying key transmission characteristics. We also show that the estimated baseline mf and

CFA prevalences in the three SVs where pre-control prevalence was unknown, namely Seri,

Gbuwhen, and Maiganga (ie. before IVM treatments were begun for onchocerciasis) were rela-

tively high (point estimates indicate 30–48% mf and 50–77% CFA prevalence, see Results).

This assessment is consistent with the long history of IVM treatments experienced by these

sites. It is also in agreement with results from independent empirical studies indicating that

these SVs are from high prevalence local government areas (LGAs) in Nigeria and will require

more rounds of treatment to interrupt transmission compared to other LGAs [34,37].

Table 5. Probabilities of elimination and resurgence after the 5-year TAS period when MDA is stopped at 1) the WHO 1% mf threshold and 2) the model-predicted

mf thresholds.

Village Observed number

of rounds of MDA

Presence of

bednets2
WHO 1% mf threshold Model-predicted site-specific mf threshold1

MDA rounds

required to reach

threshold

Elimination

probability3
Resurgence

probability4
MDA rounds

required to reach

threshold

Elimination

probability3
Resurgence

probability4

Dokan

Tofa

7 present 7 100 0 11 100 0

Piapung 7 present 7 100 0 10 100 0

Kirare 8 present 14 91 9 15 91 9

Giza 5 absent 5 24 76 22 99 1

Usino

Bundi

3 present 7 100 0 9 99 1

Seri 22 present 14 100 0 15 100 0

Gbuwhen 25 present 14 100 0 16 100 0

Maiganga 25 present 15 95 5 18 95 5

1 The model-predicted site-specific thresholds represent the 95th percentile of the empirical inverse cumulative density function of the breakpoint estimates. The

thresholds at TBR are applied for all sites except Giza where no vector control was used.
2 Model forecasts assume that the existing vector control measures will continue after MDA is stopped.
3 Elimination probability is calculated as the percentage of model forecasts that predict mf prevalence will continue to decrease after the 5-year TAS period.
4 Resurgence probability is calculated as the percentage of model forecasts that predict mf prevalence will increase after the 5-year TAS period.

https://doi.org/10.1371/journal.pcbi.1007506.t005
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Together with the findings from the validated sites, these estimates highlight the utility of

using models constrained with monitoring data for generating missing data pertaining to local

baseline LF prevalence conditions in a given site. This constitutes a highly useful capability for

disease management applications, since the discovery of information about pre-control preva-

lence in settings without such data is essential to policy makers for planning necessary inter-

ventions, determining the optimal frequency of monitoring activities, evaluating program

progress, and applying for formal validation of elimination from the WHO [4,5,26,53].

This work has also provided additional insights regarding the value of data for refining par-

asite transmission models [13,16–18,22]. We found that there was a loss of information (as

measured by the Shannon information index) when we calibrated the model to mid-MDA

data and hindcasted the initial conditions as opposed to fitting the model directly to baseline

data. The relative loss of information ranged from 2–43% (Table 2), but the model-predicted

transmission breakpoints and the median expected timelines to achieve elimination were not

notably different between the two calibration approaches (Fig C in S1 File and Table H in S1

File). This suggests that the observed loss of information, while statistically relevant, may not

be practically meaningful. This conclusion complements previous findings that predictive per-

formance of LF models is improved by calibrating the model to baseline and monitoring data

together [18]. In Michael et al. (2018), for example, we show that data-informed models pro-

vide more precise predictions than unconstrained models and that it is valuable to also include

post-intervention data in addition to baseline data to the model calibration procedure [18].

Taken together with the results of this study, we can conclude that, while baseline data may

provide the most information for model calibration, monitoring data combined with the

domain knowledge embedded in process-based models can both improve forecast horizons

[14,23] and serve as reasonable substitute for identifying LF transmission dynamics in the

absence of pre-control observations. This finding also may imply that computational irreduc-

ibility may not majorly affect the predictability of the LF models discovered using the monitor-

ing data in this study [14].

However, it is important to note that model bias can still occur when initial conditions are

not fully known. As highlighted by Beven (2007), when there is no empirical data to constrain

the boundary conditions of a system, the results are dependent critically on modeling assump-

tions [54]. Here, we assumed limits on baseline prevalence and biting rates by implementing

reasonable problem-space constraints, which can clearly influence the present model out-

comes. Bayesian approaches, such as the BM methodology employed in this work, are highly

advantageous in this scenario as the weight of the initially set subjective priors is reduced as

the model is updated with more informative data [54]. Also addressing this concern about pre-

diction bias is the fact that the identified models are able to make forecasts consistent with lon-

gitudinal monitoring data, which further increases confidence in model performance [55] (Fig

4). These findings indicate that the prediction bias of the LF models discovered here using

only partially observed monitoring data is likely to be low; overall, coupled with the data gener-

ative ability of these models, the present results support the proposal by Dzeroski et al. (2007)

for computational science to strive to make the most of the observations available rather than

wait for ideal datasets that may never come [19]. This outcome should also serve as encourage-

ment for programs to continue collecting data even if reports are incomplete as meaningful

insights using models can still be made from the data that is available.

The intervention simulations carried out for each of the investigated study sites demon-

strate how the site-specific models discovered from incomplete monitoring data using our

computational approach are able to reliably estimate the baseline force of infection in order to

simulate the impact of the MDA programs conducted in each study site. For all the present

study sites, model forecasts of the interventions carried out in each site not only matched
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temporal infection observations (Fig 4), but also provided information regarding when trans-

mission interruption is likely to have occurred with high probability. This can be seen most

strongly from the results pertaining to the three Nigerian SVs that do not have baseline data

available (Seri, Gbuwhen, and Maiganga); our analysis indicates that there is a high probability

(>95%) that the long-term MDA programs conducted in each of these SVs did indeed lead to

elimination with a low risk of infection resurgence after stopping MDA (� 5%) (Table 5).

These three SVs each conducted a total of 22–25 rounds of MDA (including the years of IVM

monotherapy for onchocerciasis), but interventions are predicted to have successfully reduced

mf prevalence below the WHO threshold after only 14–15 rounds of MDA and below the

model-estimated site-specific mf thresholds after 15–18 rounds (Table 4, Table 5). These pre-

dicted timelines of transmission interruption are in agreement with the survey data from these

sites that indicate that the mf prevalence was reduced to 0% by the end of the LF program in

2012, i.e. during the years following model-predicted transmission interruption (Table 1,

Table 5, Fig 4). These results also indicate that more rounds of interventions were carried out

than needed to achieve parasite elimination in these sites (at least 7–9 extra MDAs) (Table 5).

In all three sites, 2–5 monitoring surveys had detected 0% mf prevalence before the IVM+ALB

MDA for LF was stopped (Table 1), further supporting this conclusion.

Our assessment of elimination and resurgence probabilities also suggested a protective

effect of VC against the reemergence of transmission after stopping MDA. In seven of the

eight study sites (all but Giza), bednets were included in the control efforts and were assumed

to continue after the MDA programs have ended. In these seven sites, high probabilities of

elimination (> 90%) (and, consequently, low probabilities of resurgence) were predicted even

after stopping MDA at 1% mf prevalence, which is notable because this threshold was previ-

ously found in modeling and field studies to be too high to guarantee elimination if all inter-

ventions are stopped (Table 5) [9,10,20,21,56,57]. On the contrary, in Giza, where bednets

were not considered, 1% mf was not predicted to be sufficiently low to interrupt transmission

as indicated by a high probability of infection resurgence after stopping annual treatments

(76%). These results together suggest that the continued use of VC in the other seven sites had

a protective effect against resurgence and that the continued use or introduction of VC after

stopping MDA could lower the risk of resurgence considerably and safeguard the public health

gains made by elimination programs. Previous modeling and field studies have also empha-

sized the value of VC for protecting against resurgence after stopping MDA [9,10,36,58]. In a

study particularly relevant to the Nigerian scenario, Eigege et al. (2013) noted that eight years

of MDA was not able to interrupt transmission in the vectors in Nasarawa and Plateau states,

but that the incorporation of LLINs distributed by the malaria program was key for clearing

the remaining Wuchereria bancrofti infection in mosquitoes [36].

We note that further refinement of our CFA model is necessary given that the model under-

estimated the prevalence of antigenaemia at baseline in Usino Bundi and during interventions

in Maiganga (Fig 2, Fig 4, Table 3). In our current model, the sensitivity and specificity of the

diagnostic tests are not considered and the apparent prevalence is assumed to represent the

true infection rates [28]. Including diagnostic uncertainty for ICT is an important next step for

estimating the true prevalence of CFA which may better guide the parameter choices describ-

ing the dynamics of antigen production in response to worms. It would also be beneficial to

more fully investigate the functional relationship between worm and antigen dynamics, as we

currently use a simple production-decay function to describe this process [9]. Datasets con-

taining baseline and monitoring survey data for both mf and CFA indicators concurrently are

sparse, which points to a need for increased data sharing opportunities through partnerships

between modelers and program managers if models are to provide useful predictions. Another

future direction for this work is to incorporate mosquito infection data into our modeling
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study. Nigeria and TCC have collected extensive data on mosquito infection throughout their

MDA programs which could provide new insights about the sensitivity of different indicators

for detecting the interruption of transmission [34]. Due to the faster dynamics in the vector

population owing to short mosquito lifespans, infection in vectors may give a more accurate

reflection of ongoing transmission compared to mf and CFA indicators [9].

Supporting information

S1 File.

(DOCX)

Acknowledgments

We are grateful to the Nigerian LF Elimination Programme and staff of The Carter Center’s

Nigeria offices, whose hard work provided survey data for carrying out the calculations

reported in this manuscript. MES gratefully acknowledges the fellowship support of this work

by the Eck Institute for Global Heath, University of Notre Dame. A portion of the modelling

work was carried out using the MATLAB Parallel Computing Toolbox made available on com-

pute clusters of the University of Notre Dame’s Center for Research Computing.

Author Contributions

Conceptualization: Morgan E. Smith, Emily Griswold, Brajendra K. Singh, Edwin Michael.

Data curation: Morgan E. Smith, Emily Griswold, Emmanuel Miri, Abel Eigege.

Formal analysis: Morgan E. Smith, Brajendra K. Singh, Edwin Michael.

Methodology: Morgan E. Smith, Emily Griswold, Brajendra K. Singh, Edwin Michael.

Project administration: Edwin Michael.

Supervision: Edwin Michael.

Writing – original draft: Morgan E. Smith, Brajendra K. Singh, Edwin Michael.

Writing – review & editing: Morgan E. Smith, Emily Griswold, Brajendra K. Singh, Emman-

uel Miri, Abel Eigege, Solomon Adelamo, John Umaru, Kenrick Nwodu, Yohanna Sambo,

Jonathan Kadimbo, Jacob Danyobi, Frank O. Richards, Edwin Michael.

References
1. Jewell CP, Brown RG. Bayesian data assimilation provides rapid decision support for vector-borne dis-

eases. J R Soc Interface. 2015; 12: 20150367. https://doi.org/10.1098/rsif.2015.0367 PMID: 26136225

2. Hollingsworth TD, Adams ER, Anderson RM, Atkins K, Bartsch S, Basanez M, et al. Quantitative analy-

ses and modelling to support achievement of the 2020 goals for nine neglected tropical diseases. Para-

sit Vectors. 2015; 8: 630. https://doi.org/10.1186/s13071-015-1235-1 PMID: 26652272

3. Michael E, Malecela-Lazaro MN, Simonsen PE, Pedersen EM, Barker G, Kumar A, et al. Mathematical

modelling and the control of lymphatic filariasis. Lancet Infect Dis. 2004; 4: 223–234. https://doi.org/10.

1016/S1473-3099(04)00973-9 PMID: 15050941

4. Michael E, Malecela-Lazaro MN, Kabali C, Snow LC, Kazura JW. Mathematical models and lymphatic

filariasis control: endpoints and optimal interventions. Trends Parasitol. 2006; 22: 226–233. https://doi.

org/10.1016/j.pt.2006.03.005 PMID: 16564745

5. Michael E, Malecela-Lazaro MN, Kazura JW. Epidemiological modelling for monitoring and evaluation

of lymphatic filariasis control. Adv Parasitol. 2007; 65: 191–237. https://doi.org/10.1016/S0065-308X

(07)65003-9 PMID: 18063097

PLOS COMPUTATIONAL BIOLOGY A computational data and model discovery framework for disease prediction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007506 July 21, 2020 19 / 22

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007506.s001
https://doi.org/10.1098/rsif.2015.0367
http://www.ncbi.nlm.nih.gov/pubmed/26136225
https://doi.org/10.1186/s13071-015-1235-1
http://www.ncbi.nlm.nih.gov/pubmed/26652272
https://doi.org/10.1016/S1473-3099%2804%2900973-9
https://doi.org/10.1016/S1473-3099%2804%2900973-9
http://www.ncbi.nlm.nih.gov/pubmed/15050941
https://doi.org/10.1016/j.pt.2006.03.005
https://doi.org/10.1016/j.pt.2006.03.005
http://www.ncbi.nlm.nih.gov/pubmed/16564745
https://doi.org/10.1016/S0065-308X%2807%2965003-9
https://doi.org/10.1016/S0065-308X%2807%2965003-9
http://www.ncbi.nlm.nih.gov/pubmed/18063097
https://doi.org/10.1371/journal.pcbi.1007506


6. Heesterbeek H, Anderson RM, Andreasen V, Bansal S, De Angelis D, Dye C, et al. Modeling infectious

disease dynamics in the complex landscape of global health. Science. 2015; 347: aaa4339. https://doi.

org/10.1126/science.aaa4339 PMID: 25766240

7. Uusitalo L, Lehikoinen A, Helle I, Myrberg K. An overview of methods to evaluate uncertainty of deter-

ministic models in decision support. Environ Model Softw. 2015; 63: 24–31.
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